CFP last date
20 January 2025
Reseach Article

Autonomous Navigation and Obstacle Avoidance for a Wheeled Mobile Robots: A Hybrid Approach

by Nacer Hacene, Boubekeur Mendil
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 81 - Number 7
Year of Publication: 2013
Authors: Nacer Hacene, Boubekeur Mendil
10.5120/14027-2285

Nacer Hacene, Boubekeur Mendil . Autonomous Navigation and Obstacle Avoidance for a Wheeled Mobile Robots: A Hybrid Approach. International Journal of Computer Applications. 81, 7 ( November 2013), 34-37. DOI=10.5120/14027-2285

@article{ 10.5120/14027-2285,
author = { Nacer Hacene, Boubekeur Mendil },
title = { Autonomous Navigation and Obstacle Avoidance for a Wheeled Mobile Robots: A Hybrid Approach },
journal = { International Journal of Computer Applications },
issue_date = { November 2013 },
volume = { 81 },
number = { 7 },
month = { November },
year = { 2013 },
issn = { 0975-8887 },
pages = { 34-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume81/number7/14027-2285/ },
doi = { 10.5120/14027-2285 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:55:29.756844+05:30
%A Nacer Hacene
%A Boubekeur Mendil
%T Autonomous Navigation and Obstacle Avoidance for a Wheeled Mobile Robots: A Hybrid Approach
%J International Journal of Computer Applications
%@ 0975-8887
%V 81
%N 7
%P 34-37
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, an autonomous navigation and obstacle avoidance strategy is proposed for an omnidirectional mobile robot. The robot plans a path, starting from an initial point going to a target point. A hybrid approach has been developed where a global approach has been applied to the motion along the desired path (DP) using 2nd order polynomial planning, while a local reactive approach is used to avoid collisions with static and/or dynamic obstacles based on the "sensing vector" and the "gap vector" concepts. The "sensing vector" is a binary vector which provides information about obstacles detection, while the "gap vector" provides information about a possible nearest gap the robot can pass through it.

References
  1. M. A. Batalin, G. S. Sukhatme and M. Hattig, Mobile Robot Navigation using a Sensor Network, In IEEE International Conference on Robotics and Automation, New Orleans, LA, pp. 636-642, April 26 - May 1, 2004.
  2. W. Hai-hua and L. Dong-liang, obstacle avoidance path planning in robot soccer, IEEE 2nd Conference on Environmental Science and Information Application Technology, pp. 748-750, 2010
  3. L. Tang ,S. Dian, G. Gu, K. Zhou, S. Wang and X. Feng, A Novel Potential Field Method for Obstacle Avoidance and Path Planning of Mobile Robot, IEEE, 2010.
  4. N. H. Viet, N. A. Vien, S. G. Lee, and T. C. Chung, Obstacle Avoidance Path Planning for Mobile Robot Based on Multi Colony Ant Algorithm, IEEE 1st International Conference on Advances in Computer-Human Interaction, pp. 285-289, 2008.
  5. M. Kam, X. Zhu, and P. Kalata, Sensor Fusion for Mobile Robot Navigation, proceedings of the IEEE, Vol. 85, N° 1, pp. 108-119, January, 1997.
  6. M. O. Franz and H. A. Mallot, Biomimetic robot navigation, Robotics and Autonomous Systems, 30, pp. 133–153, 2000.
  7. P. Bhattacharya and M. L. Gavrilova, Roadmap-Based Path Planning, Using the Voronoi Diagram for a Clearance-Based Shortest Path, IEEE Robotics & Automation Magazine, pp. 58-66, JUNE 2008.
  8. S. Garrido, L. Moreno and D. Blanco, Voronoi Diagram and Fast Marching applied to Path Planning, Proceedings of the IEEE International Conference on Robotics and Automation Orlando, Florida, pp 3049-3054, May 2006.
  9. S. S. Keerthi, C. J. Ong, E. Huang, E. G. Gilbert, Equidistance Diagram - A New Roadmap Method for Path Planning, Proceedings of the IEEE International Conference on Robotics & Automation Detroit, Michigan, pp. 682-687, May 1999.
  10. N. Buniyamin, W. Ngah, N. Sariff and Z. Mohamad, A Simple Local Path Planning Algorithm for Autonomous Mobile Robots, International Journal of Systems Applications, Engineering & Development, Issue 2, Volume 5, pp. 151-159, 2011.
  11. L. Chengqing, M. HAng Jr, H. Krishnan and L. S. Yong, Virtual Obstacle Concept for Local-minimum-recovery in Potential-field Based Navigation, Proceedings of the IEEE International Conference on Robotics & Automation San Francisco, CA, pp. 983-988, April, 2000.
  12. W. H. Huang, B. R. Fajen, J. R. Fink and W. H. Warren, Visual navigation and obstacle avoidance using a steering potential function, Robotics and Autonomous Systems 54, Elsevier, pp. 288–299, 2006.
  13. J. Borenstein, and Y. Koren, Real-time Obstacle Avoidance for Fast Mobile Robots, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 19, No. 5, pp. 1179-1187, Sept/Oct. 1989.
  14. J. Borenstein & Y. Koren, The Vector Field Histogram - Fast Obstacle Avoidance For Mobile Robots, IEEE Transactions on Robotics And Automation, vol. 7, N° 3, pp. 278-288, June 1991.
  15. I. Ulrich and J. Borenstein, VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots, Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, pp. 1572 – 1577, May 16–21, 1998.
  16. I. Ulrich and J. Borenstein, VFH*: Local Obstacle Avoidance with Look-Ahead Verification, IEEE International Conference on Robotics and Automation, San Francisco, CA, pp. 2505-2511, April 24-28, 2000.
  17. Y. Cang and J. Borenstein, A Method for Mobile Robot Navigation on Rough Terrain, IEEE International Conference on Robotics and Automation, New Orleans, LA, pp. 3863-3869, April 26-May 1, 2004.
  18. J. Minguez and L. Montano, Nearness Diagram (ND) Navigation: Collision Avoidance in Troublesome Scenarios, IEEE Transactions On Robotics And Automation, Vol. 20, N°. 1, pp. 45-59, February 2004.
  19. S. Khatoon and Ibraheem, Autonomous Mobile Robot Navigation by Combining Local and Global Techniques, International Journal of Computer Applications, Volume 37, N° 3, January 2012.
  20. H. Teimoori and A V. Savkin, Equiangular Navigation Guidance of a Wheeled Mobile Robot with Local Obstacle Avoidance, Proceedings of the IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand, pp. 1962-1967, February 21 - 26, 2008.
  21. Y. Jincong, Z. Xiuping, N. Zhengyuan, H. Quanzhen, Intelligent Robot Obstacle Avoidance System Based on Fuzzy Control, The IEEE 1st International Conference on Information Science and Engineering (ICISE), pp. 3812-3815, 2009.
  22. C. Cai1, C. Yang, Q. Zhu and Y. Liang, A Fuzzy-based Collision Avoidance Approach for Multi-robot Systems, Proceedings of the IEEE International Conference on Robotics and Biomimetics, Sanya, China, pp. 1012-1017, December 15 -18, 2007.
  23. V. Yadav, X. Wang and S. N. Balakrishnan, Neural Network Approach for Obstacle Avoidance in 3-D Environments for UAVs, Proceedings of the American Control Conference Minneapolis, Minnesota, USA, pp. 3667-3672, June 14-16, 2006.
  24. J. A. F. Leon, M. Tosini and G. G Acosta, Evolutionary Reactive Behavior for Mobile Robots Navigation, Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, Singapore, pp. 532-537, 1-3 December, 2004.
  25. D. R. Parh, J. K. Pothal and M. K. Singh, Navigation of Multiple Mobile Robots Using Swarm Intelligence, World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 1145-1149, 2009.
  26. R. R. Sahoo, P. Rakshit and M. T. Haidar, Navigational Path Planning of Multi-Robot using Honey Bee Mating Optimization Algorithm (HBMO), International Journal of Computer Applications, Volume 27, No. 11, August 2011.
  27. R. L. Williams II and J. Wu, Dynamic Obstacle Avoidance for an Omnidirectional Mobile Robot, Journal of Robotics, 14 pages, September, 2010.
Index Terms

Computer Science
Information Sciences

Keywords

Omnidirectional mobile robot autonomous navigation path planning obstacle avoidance hybrid approach.