International Journal of Computer Applications |
Foundation of Computer Science (FCS), NY, USA |
Volume 81 - Number 7 |
Year of Publication: 2013 |
Authors: Nacer Hacene, Boubekeur Mendil |
10.5120/14027-2285 |
Nacer Hacene, Boubekeur Mendil . Autonomous Navigation and Obstacle Avoidance for a Wheeled Mobile Robots: A Hybrid Approach. International Journal of Computer Applications. 81, 7 ( November 2013), 34-37. DOI=10.5120/14027-2285
In this paper, an autonomous navigation and obstacle avoidance strategy is proposed for an omnidirectional mobile robot. The robot plans a path, starting from an initial point going to a target point. A hybrid approach has been developed where a global approach has been applied to the motion along the desired path (DP) using 2nd order polynomial planning, while a local reactive approach is used to avoid collisions with static and/or dynamic obstacles based on the "sensing vector" and the "gap vector" concepts. The "sensing vector" is a binary vector which provides information about obstacles detection, while the "gap vector" provides information about a possible nearest gap the robot can pass through it.