CFP last date
20 February 2025
Reseach Article

Numerical Study of Liquid Metal MHD Duct Flow under Hydrodynamic ìSlipî Condition

by Dipjyoti Sarma, P. N. Deka
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 81 - Number 16
Year of Publication: 2013
Authors: Dipjyoti Sarma, P. N. Deka
10.5120/14205-2381

Dipjyoti Sarma, P. N. Deka . Numerical Study of Liquid Metal MHD Duct Flow under Hydrodynamic ìSlipî Condition. International Journal of Computer Applications. 81, 16 ( November 2013), 7-10. DOI=10.5120/14205-2381

@article{ 10.5120/14205-2381,
author = { Dipjyoti Sarma, P. N. Deka },
title = { Numerical Study of Liquid Metal MHD Duct Flow under Hydrodynamic ìSlipî Condition },
journal = { International Journal of Computer Applications },
issue_date = { November 2013 },
volume = { 81 },
number = { 16 },
month = { November },
year = { 2013 },
issn = { 0975-8887 },
pages = { 7-10 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume81/number16/14205-2381/ },
doi = { 10.5120/14205-2381 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:56:12.734109+05:30
%A Dipjyoti Sarma
%A P. N. Deka
%T Numerical Study of Liquid Metal MHD Duct Flow under Hydrodynamic ìSlipî Condition
%J International Journal of Computer Applications
%@ 0975-8887
%V 81
%N 16
%P 7-10
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A numerical study for steady MHD flow of liquid metal through a square duct with slip walls has been carried out. An intense external magnetic field is acting normal to two walls of the square duct which are considered as slip walls. The numerical solutions for velocity and induced magnetic field have been obtained by using a 5 point stencil central difference scheme. Solutions for velocity and induced field for different values of Hartmann number and with consideration of a fixed value of slip length parameter are presented graphically.

References
  1. Navier, C. L. M. H. 1823. Sur les du mouvement des fluids. Mem. Acad. R. Sci. Inst. France. 6. 389-440.
  2. Thompson, P. A. and Troian, S. M. 1997. A general boundary condition for liquid flow at solid surfaces. Nature. 389(25 Sept). 360-362.
  3. Cieplak, M. , Koplik, J. and Banavar, J. R. 2001. Boundary Conditions at a Fluid-Solid Interface. Physical Review Letter. 86(5). 803-806.
  4. Tretheway, D. C. and Meinhart, C. D. 2002. Apparent fluid slip at hydrophobic microchannel walls. Physics of Fluids. 14(3). 9-12.
  5. Zhu, Y. and Granick, S. 2002. Limits of Hydrodynamic No-Slip Boundary Condition. Physical Review Letters. 88(10). 106102(1-4).
  6. Bazant, M. Z. and Vinogradova, O. I. 2008 Tensorial hydrodynamic slip. Journal of Fluid Mechanics. 613. 125-134.
  7. Smolentsev, S. 2009. MHD duct flows under hydrodynamic "slip" condition. Theoretical Computational Fluid Dynamics. 23(6). 557-570.
  8. Kamrin, K. , Bazant, M. Z. and Stone, H. A. 2010. Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. Journal of Fluid Mechanics. 658. 409-437.
  9. Brenner, H. 2011. Beyond the no-slip condition. Physics Review E. 84(4). 046309(1-8).
  10. Sarma, D. , Hazarika, G. C. and Deka, P. N. 2013. Numerical study of liquid metal MHD flow through a Square duct under the action of strong transverse magnetic field. International Journal of Computer Application. 71(8). 29-32.
  11. Pint, B. A. , More, K. L. , Meyer, H. M. and Distefano, J. R. 2005. Recent progress addressing compatibility issues relevant to fusion environment. Fusion Science and Technology. 47(4). 851-855.
  12. Noborio, K. , Kasada, R. ,Yamamato, Y. ,Nam,G. and Konishi, S. 2009. Compatibility of materials for advanced blanket with liquid LiPb. SOFE 2009, 23rd IEEE/NPSS Symposium on. San Diego CA.
  13. Morley, N. B. ,Medina, A. and Abdou, M. A. (2009). Measurements of specific electrical contact resistance between SiC and lead-lithium eutectic alloy. Fusion Science and Technology. 56(July). 195-200.
Index Terms

Computer Science
Information Sciences

Keywords

Liquid metal Hartmann layer Square duct Slip length parameter