CFP last date
20 December 2024
Reseach Article

A Model for African Fabrics Analysis and Recognition

by J. B. Olawale, A. O. Ajayi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 81 - Number 15
Year of Publication: 2013
Authors: J. B. Olawale, A. O. Ajayi
10.5120/14203-2481

J. B. Olawale, A. O. Ajayi . A Model for African Fabrics Analysis and Recognition. International Journal of Computer Applications. 81, 15 ( November 2013), 38-43. DOI=10.5120/14203-2481

@article{ 10.5120/14203-2481,
author = { J. B. Olawale, A. O. Ajayi },
title = { A Model for African Fabrics Analysis and Recognition },
journal = { International Journal of Computer Applications },
issue_date = { November 2013 },
volume = { 81 },
number = { 15 },
month = { November },
year = { 2013 },
issn = { 0975-8887 },
pages = { 38-43 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume81/number15/14203-2481/ },
doi = { 10.5120/14203-2481 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:56:32.897060+05:30
%A J. B. Olawale
%A A. O. Ajayi
%T A Model for African Fabrics Analysis and Recognition
%J International Journal of Computer Applications
%@ 0975-8887
%V 81
%N 15
%P 38-43
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, a model to analyse and distinguish traditional African fabric patterns is presented. The model can be a valuable tool in image retrieval systems. Selected African fabric patterns were analysed using image processing and wavelet analysis techniques to extract relevant features for the recognition purpose. The recognition model consisted of multiple multi-layered artificial neural networks that used statistical and structural properties to recognize African fabrics' patterns. The model was simulated in MATLAB environment and its performance with respect to the accuracy of the recognised fabrics patterns was evaluated using the following metrics sensitivity, specificity and efficiency.

References
  1. Akinwumi, T. M. 2008. The "African Print" hoax: machine produced textiles jeopardize African print authenticity. The Journal of Pan African Studies, 2(5), 179-192.
  2. Cali S. , Ertu?rul ?. , and Ucar N. 2004. Fault detection and classification in knitted structures using Fourier analysis and neural networks. 9th Mechatronics Forum International Conference, Ankara, Turkey, 445-448.
  3. Canny, J. 1986. A computational approach to edge detection. TPAMI, 8(6):679–698
  4. Escofet J. , Navarro R. , Millán M. S. , and Pladellorens J. , 1998. Detection of local defects in textile webs using Gabor filters, Opt. Eng. 37(8), 2297-2307
  5. Gokmen G. 2011. Wavelet based reference current calculation method for active compensation systems. Electronics and Electrical Engineering, 2(108), 61–66.
  6. Hagan, M. T. , Demuth, H. B. , and Beale, M. 2002. Neural Network Design. Boston: Campus Publishing Service, University of Colorado.
  7. Han, J. and Mackenna, S. J. 2009. Classifying and Comparing Regular Textiles for Retrieval Using Texel Geometry. International Conference on Computer Vision, Theory and Applications, Portugal.
  8. Jafari-Khouzani, K and Soltanian-Zadeh, H. 2005. Radon transform orientation estimation for rotation invariant texture analysis. IEEE Trans. 27 (6), 1004-1008
  9. Jamil N. , Baker Z. A. , and Senbok, T. M. T. 2006. Image Retrieval of Songlet Motifs using Simple Shape Descriptors. Geomtric Modelling and Imaging New Trends (GMAT' 06). London, pp. 171-176
  10. Kumar A. 2003. Neural network based detection of local textile defects, Pattern recognition, 36, 1645-1659.
  11. Kuo, C. F. , Shih, C. Y. and Lee, J. Y. 2008. Separating color and identifying repeat pattern through the automatic computerized analysis system for printed fabrics. Journal of Information Science and Engineering, 24, 453-467.
  12. Kwak, C. , Ventura, J. A. , and Tofang-Sazic, K. 2001. Automated defect inspection and classification of leather fabric. Intelligent Data Analysis, 5,355–370.
  13. Larkins, D. B. and Harvey, W. 2009. Introductory computational science using MATLAB and image processing, Procedia Computer Science, 1–9.
  14. Li, S. and Taylor, J. S. 2005. Comparison and fusion of multi-resolution features for texture classification. Pattern Recognition Letters, 26, 633– 638.
  15. Martin, T. , Jones, M. , Edmison, J. , Sheikh, T. , and Nakad, Z. "Modeling and Simulating Electronic Textile Applications", LCTES, USA, 2004
  16. Perani, J. and Wolff, N. H. 1999. Cloth, dress, and art patronage in Africa, Berg Publishers.
  17. Popov A. , Kanaykin A. , Zhukov M. , and Panichev O. , Bodilovsky O. 2010. Adapted mother wavelets for identification of Epileptiform complexes in Electroencephalograms. Electronics and Electrical Engineering, 8(104), 89–92.
  18. Sastry, C. S. , Pujari, A. K. , Deekshatulu, B. L. , and Bhagvati, C. 2004. A wavelet based multi-resolution algorithm for rotation invariant feature extraction. Pattern Recognition Letters. 25 (16), 1845–1855.
  19. Subasi A. 2007. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 2(4), 1084-1093.
  20. Tilocca A. , Borzone P. , Carosio S. , and Du¬rante A. 2002. Detecting fabric defects with a neural network using two kinds of optical patterns. Textile Research Jo¬urnal, 72(6), 545-550.
  21. Uçar, N. and Ertu?rul, S. 2007. Prediction of fuzz fibers on fabric surface by using neural network and regression analysis. Fibers & Textiles in Eastern Europe, 15(2), 58-61.
  22. Xu B. and Lin, S. 2002. Automatic color identification in printed fabric images by a Fuzzy-Neural network. AATCC Review, 2(9), 42-45.
  23. Yiming J, Kai H. C. and Chi-Cheng H. 2004. Efficient Edge Detection and Object Segmentation Using Gabor Filters. ACMSE '04, Huntsville, Alabama, USA, 454-459.
Index Terms

Computer Science
Information Sciences

Keywords

African fabric patterns analysis search engines information challenged community