CFP last date
20 February 2025
Reseach Article

Feature Scores Fusion for Chemical Class Recognition of Volatile Organic Compounds by Response Analysis of Surface Acoustic Wave Sensor Array

by Sunil Kr. Jha, Kenshi Hayashi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 80 - Number 5
Year of Publication: 2013
Authors: Sunil Kr. Jha, Kenshi Hayashi
10.5120/13859-1706

Sunil Kr. Jha, Kenshi Hayashi . Feature Scores Fusion for Chemical Class Recognition of Volatile Organic Compounds by Response Analysis of Surface Acoustic Wave Sensor Array. International Journal of Computer Applications. 80, 5 ( October 2013), 30-37. DOI=10.5120/13859-1706

@article{ 10.5120/13859-1706,
author = { Sunil Kr. Jha, Kenshi Hayashi },
title = { Feature Scores Fusion for Chemical Class Recognition of Volatile Organic Compounds by Response Analysis of Surface Acoustic Wave Sensor Array },
journal = { International Journal of Computer Applications },
issue_date = { October 2013 },
volume = { 80 },
number = { 5 },
month = { October },
year = { 2013 },
issn = { 0975-8887 },
pages = { 30-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume80/number5/13859-1706/ },
doi = { 10.5120/13859-1706 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:53:45.671977+05:30
%A Sunil Kr. Jha
%A Kenshi Hayashi
%T Feature Scores Fusion for Chemical Class Recognition of Volatile Organic Compounds by Response Analysis of Surface Acoustic Wave Sensor Array
%J International Journal of Computer Applications
%@ 0975-8887
%V 80
%N 5
%P 30-37
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents fusion based pattern recognition approach of feature scores for chemical class identification of volatile organic compounds (VOCs) by response analysis of model surface acoustic wave (SAW) sensor array. Diverse features are generated by analysis of sensor array response using three feature extraction methods: principal component analysis (PCA), independent component analysis (ICA) and kernel principal component analysis (KPCA). Thereafter feature vectors are fused with three straightforward fusion strategies including i) summation, ii) multiplication and iii) combination of feature vectors. Chemical class recognition efficiency of fused feature is experimentally verified by feeding them to the input of support vector machine (SVM) classifier. Experimental outcomes are based on analysis of 12 data sets generated with SAW sensor model simulation, containing different intensity of noise and outliers. It has been observed that in research of three fusion schemes; fusion by summation of feature vectors achieves persistently highest correct chemical class recognition rate (average 90%) of VOCs followed by combination and multiplication. Though in case of less noisy SAW sensor array response, fusion by combination of feature vectors results comparable class recognition efficiency to that of fusion by summation.

References
  1. Gardener, J. W. and Bartlett, P. N. 1999. Electronic Noses Principles and Application, New York, Oxford University Press.
  2. Arshak, K. , Moore, E. , Lyons, G. M. , Harris, J. and Clifford, S. 2004. A review of gas sensors employed in electronic nose applications, Sensor Review 24, 181–198.
  3. Jurs, P. C. , Bakken, G. A. and McClelland, H. E. 2000. Computational methods for the analysis of chemical sensor array data from volatile analytes, Chemical Review 100, 2649–2678.
  4. Rock, F. , Barsan, N. , and Weimar, U. 2008. Electronic nose: current status and future trends, Chemical Review 108, 705–725.
  5. Bloch, I. 1996. Information combination operators for data fusion: a comparative review with classification, IEEE Trans. Syst. Man Cyber. 26, 52–67.
  6. Varshney, P. K. , 1997. Distributed Detection and Data Fusion, Springer-Verlag, New York.
  7. Hall, D. L. and Llinas, J. 1997. An introduction to multisensor data fusion, IEEE Proc. 85, 6–23.
  8. Goodman, I. R. , Mahler, R. P. S. and Nguyen, H. T. 1997. Mathematics of Data Fusion, Kluwer Academic Publishers, Dordrecht, Netherland.
  9. Mangai, U. G. , Samanta, S. , Das, S. and Chaowdhury, P. R. 2010. A survey of decision fusion and feature fusion strategies for pattern classification, IETE Technical Review 27, 293–307.
  10. Smith, D. and Singh, S. 2006. Approaches to multisensor data fusion in target tracking: A survey, IEEE Trans. Know. Data Eng. 18, 1696?1710.
  11. Kleine-Ostmann, T. and Bell, A. E. 2001. A data fusion architecture for enhanced position estimation in wireless networks, IEEE Communications Letters 5, 343?345.
  12. Ben-Yacoub, S. , Abdeljaoued, Y. , and Mayoraz, E. 1999. Fusion of face and speech data for person identity veri?cation IEEE Trans. Neural Networks 10, 1065?1074.
  13. Jeon, B. and Landgrebe, D. A. 1999. Decision fusion approach for multi temporal classi?cation IEEE Trans. Geoscience & Remote Sensing 37, 1227?1233.
  14. Lanckriet, G. G. , Bie, T. D. , Cristianini, N. , Jordan, M. I. and Noble, W. S. 2004. A statistical framework for genomic data fusion, Bioinformatics 20, 2626–2635.
  15. Dutta, R. , Hines, E. L. , Gardner, J. W. , Udrea, D. D. and Boilot, P. 2003. Non-destructive egg freshness determination: an electronic nose based approach, Meas. Sci. Technol. 14, 190–198.
  16. Natale, C. D. , Macagnano, A. , Nardis, S. , Paolesse, R. , Falconi, C. , Proietti, E. , Siciliano, P. , Rella, R. , Taurino, A. and Amico, A. D'. 2001. Comparison and integration of arrays of quartz resonators and metal oxide semiconductors chemiresistors in the quality evaluation of olive oils, Sensors and Actuators B: Chemical 78, 303–309.
  17. Li, C. , Heinemann, P. , and Sherry, R. 2007. Neural network and Bayesian network fusion models to fuse electronic nose and surface acoustic wave sensor data for apple defect detection, Sensors and Actuators B: Chemical 125, 301–310.
  18. Rong, L. , Ping, W. and Wenlei, H. 2000. A novel method for wine analysis based on sensor fusion technique, Sensors and Actuators B: Chemical 66 246–250.
  19. Marcialis, G. , and Roli, F. 2006. Decision level fusion of PCA and LDA based face recognition algorithms, International Journal of Image and Graphics 6, 239–311.
  20. Jha, S. K. and Yadava, R. D. S. 2010. Development of surface acoustic wave electronic nose using pattern recognition system, Defence Science Journal 60, 364–376.
  21. Yadava, R. D. S. and Chaudhary, R. 2006. Solvation transduction and independent component analysis for pattern recognition in SAW electronic nose, Sensors Actuators B: Chemical 113, 1–21.
  22. Jha, S. K. , Yadava, R. D. S. 2009. Preprocessing of SAW sensor array data and pattern recognition, IEEE Sensors Journal 9, 1202–1208.
  23. Osuna, R. G. and Nagle, H. T. 1999. Method for evaluating data-preprocessing techniques for odor classification with an array of gas sensor, IEEE Trans. System Man Cybernetics: B 29, 626–632.
  24. Theodoridis, S. and Koutroumbas, K. 2006. Pattern Recognition 2nd edition, Academic Press, San Diego, Chapter 4 and 6.
  25. Smith, L. I. 2002. A tutorial on Principal Components Analysis, 1–26.
  26. Bishop, C. M. 2006. Pattern Recognition and Machine Learning, Springer, New York, USA.
  27. R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051- 07-0, 2008. http://www. R-project. org.
  28. Karatzoglou, A. , Smola, A. , Hornik, K. and Zeileis, A. 2004. Kernlab - An S4 Package for Kernel Methods in R, Journal of Statistical Software 11, 1–20. http://www. jstatsoft. org/v11/i09.
  29. Hyvärinen, A. , Karhunen, J. and Oja, E. 2001. Independent Component Analysis, John Wiley & Sons, Canada.
  30. Marchini, J. L. , Heaton, C. and Ripley, B. D. 2007. fastICA: FastICA Algorithms to perform ICA and Projection Pursuit. R package version 1. 1-9.
  31. Fumera, G. and Roli, F. 2004. Analysis of error-reject trade-off in linearly combined multiple classifiers, Pattern Recognition, 1245–1265.
  32. Vapnik, V. 1979. Estimation of Dependences Based on Empirical Data [in Russian], Nauka, Moscow, [English translation], Springer Verlag, New York, 1982.
  33. Vapnik, V. , 1995. The Nature of Statistical Learning Theory, Springer Verlag, New York.
  34. Christopher, J. C. and Burges, A. 1998. Tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery 2, 121–167.
  35. Gunn, S. R. 1998. Support Vector Machines for classification and regression, Technical Report, 1–66.
  36. Dimitriadou, E. , Hornik, K. , Leisch, F. , Meyer, D. and Weingessel, A. 2008. e1071: Misc Functions of the Department of Statistics (e1071), TU Wien, R package version 1. 5-18.
  37. Sadeghi, M. T. , Samiei, M. and Kittler, J. 2010. Fusion of PCA-based and LDA-based similarity measures for face verification, EURASIP Journal on Advances in Signal Processing, 1?12.
Index Terms

Computer Science
Information Sciences

Keywords

Feature fusion VOCs class recognition SAW sensor Electronic nose