CFP last date
20 February 2025
Reseach Article

Testing Hypothesis for New Class of Life Distribution Nbufr- t0

by N. A. Abdul Alim
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 80 - Number 5
Year of Publication: 2013
Authors: N. A. Abdul Alim
10.5120/13858-1705

N. A. Abdul Alim . Testing Hypothesis for New Class of Life Distribution Nbufr- t0. International Journal of Computer Applications. 80, 5 ( October 2013), 25-29. DOI=10.5120/13858-1705

@article{ 10.5120/13858-1705,
author = { N. A. Abdul Alim },
title = { Testing Hypothesis for New Class of Life Distribution Nbufr- t0 },
journal = { International Journal of Computer Applications },
issue_date = { October 2013 },
volume = { 80 },
number = { 5 },
month = { October },
year = { 2013 },
issn = { 0975-8887 },
pages = { 25-29 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume80/number5/13858-1705/ },
doi = { 10.5120/13858-1705 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:53:45.005638+05:30
%A N. A. Abdul Alim
%T Testing Hypothesis for New Class of Life Distribution Nbufr- t0
%J International Journal of Computer Applications
%@ 0975-8887
%V 80
%N 5
%P 25-29
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A new concept of ageing distribution, namely new better (worse) than used in failure rate at specific time (NBUFR- (NWUFR- )) are introduced. The problem is investigated how to prove that after a specified time of operation the failure rate of an item is greater than the corresponding failure rate of a new item. This problem occurs in various areas like for instance in industry, when designing a maintenance policy. A test statistics that based on the goodness of fit method are derived for testing exponentially versus the NBUFR- alternatives. The percentiles and powers of this test statistic are tabulated. The asymptotic efficiencies for some alternatives are derived. A medical data is taken as a practical application.

References
  1. Abouammoh, A. M. and Ahmed, A. N. (1988). The new better than used failure rate class of life distribution. Adv. Prob. , 20, 237-240.
  2. Ahmad, I. A. (1994). A class of statistics useful in testing increasing failure rate average and new better than life distributions, J. Statist. Planning Inf. 41 141-149.
  3. Ahmad, I. A. (2001). Moment inequalities of aging families of distributions with hypotheses testing applications, J. Statist. Planning Inf. 92 121 –132.
  4. Ahmad, I. A. (1998). Testing whether a survival distribution Is new better than used of an unknown specified age. Biometrika. 85, 451-7.
  5. Ahmed. I. A. , Ibrahim. A. A. and Mugdadi. A. R. (2001). A goodnees if fit approach to major life testing problems. International J. of reliability and applications, 2, 2, 81-97.
  6. Ahmed H. El-Bassiouny, Ammar M. Sarhan, M. Al-Garian (2004). Testing exponentiality against NBUFR (NWUFR), Appl. Math. and Computat. , 149, 2, 351-358.
  7. Barlow, R. E. and Proschan, F. (1981). Statistical Theory of Reliability and Life Testing. To Begin with. Silver Spring, M D.
  8. Bryson, M. C. and Siddiqui, M. M. (1969). Some criteria for aging. J. Amer. Statist. Asoc. , 64, 1472-1483.
  9. Cao, J. and Wang, Y. (1991). The NBUC and NWUC classes of life distributions. J. Appl. Prob. , 28, 473-479.
  10. Deshpande, J. V. , Kochar, S. C. and Singh, H. (1986). Aspects of positive aging. J. Appl. Prob. , 23, 748-758.
  11. Ebrahimi, N. and Habbibullah, M. (1990). Testing whether the survival distribution is new better than used of specified age, Biometrika 77, 212–215.
  12. Elbatal, I (2007). Some Aging Classes of Life Distributions at Specific Age. International Mathematical Forum, 2, 29, 1445-1456.
  13. Hardle,W. Smoothing Techniques With Implementation In S. Spring-Verlag (1991), New York.
  14. Hendi, M. and Abouammoh, A. (2001). Testing new better than renewal used life distributions based on U – test. Comm. Statist. Theory. Math 30, 10 2135-2148.
  15. Hollander, M. Proschan, F. (1972). Testing whether new is better than used, Ann. Math. Statist. 43, 1136 –1146.
  16. Hollander, M. Park, D. and Proschan, F. (1986). A class of life distributions for aging. J. Am. Statist. Ass. 81, 91-95.
  17. Ibrahim A. Alwasel and Ahmed H. El-bassiouny. (2001) Testing whether a survival function is new better than used of a specified age, ISSR. Cairo Univ. , 45, 2, 155-162.
  18. Lee, A. J. U-Statistics, Marcel Dekker (1989), New York, NY.
  19. Li Zehui and Li Xiaohu (1998). {IFR* } and {NBU* } classes of life distributions. J. Statist. Planning Inf. 70, 191-200.
  20. Mahmoud, M. A. W. and Abdul Alim, N. A (2002) On testing exponentiality against nbarfr life distributions. STATISTICA, anno LXII, n, 4, pp 599-610.
  21. Mahmoud, M. A. W. Abdul Alim, N. A. and Diab L. S. (2009): On The New Better Than Used Renewal Failure Rate at Specied Time. EQC 24, 1, 87-99.
  22. Parameshwar V. Pandit (2004). A note on testing exponentiality against new better than used of specified age, Econ. Quality Control, 19, 2, 205-213.
  23. Proschan, F. Pyke, R. (1967). Tests for monotone failure rate, Fifth Berkely Sympo. 3 293 –313.
  24. Rolski, T. (1975). Mean residual life. Bulletin of the International Statistical Institute. 46,266-270.
Index Terms

Computer Science
Information Sciences

Keywords

NBUFR- NWUFR- Mont Carlo method Hypotheses testing NBUFR U-statistic Life testing Exponential distribution Goodness of fit testing Efficiency Power of test.