CFP last date
20 January 2025
Reseach Article

3D Microelectrode Geometry Effects the Multilayer Dense Osteo Intra-organelle Membrane Potential Characterization

by S. Sarkar, R. Mahapatra
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 80 - Number 17
Year of Publication: 2013
Authors: S. Sarkar, R. Mahapatra
10.5120/13966-1065

S. Sarkar, R. Mahapatra . 3D Microelectrode Geometry Effects the Multilayer Dense Osteo Intra-organelle Membrane Potential Characterization. International Journal of Computer Applications. 80, 17 ( October 2013), 1-9. DOI=10.5120/13966-1065

@article{ 10.5120/13966-1065,
author = { S. Sarkar, R. Mahapatra },
title = { 3D Microelectrode Geometry Effects the Multilayer Dense Osteo Intra-organelle Membrane Potential Characterization },
journal = { International Journal of Computer Applications },
issue_date = { October 2013 },
volume = { 80 },
number = { 17 },
month = { October },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-9 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume80/number17/13966-1065/ },
doi = { 10.5120/13966-1065 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:54:46.181819+05:30
%A S. Sarkar
%A R. Mahapatra
%T 3D Microelectrode Geometry Effects the Multilayer Dense Osteo Intra-organelle Membrane Potential Characterization
%J International Journal of Computer Applications
%@ 0975-8887
%V 80
%N 17
%P 1-9
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

We report the computational simulation study for the characterization of multilayer dense osteoblast intra organelle membrane potential in different microelectrode. The response of a cell model at various frequencies and the effect of cell parameters, such as cell membrane resistance and capacitance, were studied. We show that at low frequencies—the intra organelle can be electro porated while at high frequencies, the induced potential can be much lower than that at low frequencies at same applied voltage for dense osteo cells . we also find out that the induced TMP of osteoblast cell depends not only on its radius and geometry of the microelectrode but also the resistances and capacitances of suspending medium, which effects the dielectric property of osteoblast cell.

References
  1. L. M. Mir, "Therapeutic perspectives of in vivo cell electropermeabilization," Bioelectrochemistry, vol. 53, pp. 1–10, 2000.
  2. E. Neumann, A. E. Sowers, and C. A. Jorda, Electroporation and Electrofusion in Cell Biology. New York: Plenum, 1989.
  3. S. Orlowski and L. M. Mir, "Cell electroporation: A new tool for biochemical and pharmacological studies," Biochim. Biophys. Acta, vol 1154, pp. 51–62, 1993.
  4. L. M. Mir,M. F. Bureau, J. Gehl, R. Rangara, D. Rouy, J. M. Caillaud, P. Delaere, D. Branellec, B. Schwartz, and D. Scherman, "High-efficiencygene transfer into skeletal muscle mediated by electric pulses," in Proc. Nat. Acad. Sci. USA, vol. 96, 1999, pp. 4262–4267.
  5. G. Sersa, T. Cufer, M. Cemazar, M. Rebersek, and Z. Rudolf, "Electrochemotherapy with bleomycin in the treatment of hypernephromametastasis," Case Report and Literature Review, Tumori, vol. 86, pp. 163–165, 2000.
  6. C. E. Fear and M. A. Stuchly, "Biological cells with gap junctions inlow-frequency electric fields," IEEE Trans. Biomed. Eng. , vol. 45, pp. 856–866, July 1998.
  7. "Modeling assemblies of biological cells exposed to electricfields," IEEE Trans. Biomed. Eng. , vol. 45, pp. 1259–1271, Oct. 1998.
  8. T. Kotnik and D. Miklav?ci?c, "Analytical description of transmembrane voltage induced by electric fields on spheroidal cells," Biophys. J. , vol. 79, pp. 670–679, 2000.
  9. H. P. Schwan, "Electrical properties of tissue and cell suspensions," Adv. Biol. Med. Phys. , vol. 5, pp. 147–209, 1957.
  10. H. P. Schwan, Dielectrophoresis and rotation of cell, in: E. Neumann, A. E. Sowers, C. A. Jordan (Eds. ), Electroporation and Electrofusion in Cell Biology, Plenum press, New York, 1989.
  11. U. Zimmermann, G. A. Neil, Electromanipulation of Cells, CRC Press, New York, 1996.
  12. K. H. Schoenbach, et al. , Bioelectrics—new applications for pulsed power technology, IEEE Trans. Plasma Sci. 30 (1) (2002).
  13. S. B. Dev, D. P. Rabussay, G. Widera, G. A. Hoffmann, Medical applications of electroporation,IEEE Trans. Plasma Sci. 28 (1) (2000) 206–223.
  14. M. Jaroszeski, R. Heller, R. Gilbert (Eds. ), Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery: Electrically Mediated Delivery of Molecules to Cells, Methods in Molecular Medicine, vol. 37, Humana Press, Totowa, NJ, 2000.
  15. E. Neumann, A. E. Sowers, and C. A. Jordan, Electroporation and Electrofusion in Cell Biology. New York: Plenum, 1989.
  16. J. C. Weaver and Y. A. Chizmadzhev, "Theory of electroporation:A review," Bioelectrochem. Bioenerg. , vol. 41, no. 2, pp. 135–160,Dec. 1996.
  17. G. Pucihar, T. Kotnik, B. Vali?c, and D. Miklav?ci?c, "Numerical determination of transmembrane voltage induced on irregularly shaped cells," Ann. Biomed. Eng. , vol. 34, no. 4, pp. 642–652, Apr. 2006.
  18. A. G. Pakhomov, J. F. Kolb, J. A. White, R. P. Joshi, S. Xiao, and K. H. Schoenbach, "Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF)", Bioelectromagnetics, vol. 28, no. 8, pp. 655–663, Dec. 2007.
  19. K. H. Schoenbach, S. Xiao, R. P. Joshi, J. T. Camp, T. Heeren, J. F. Kolb,and S. J. Beebe, "The effect of intense subnanosecond electrical pulses onbiological cells", IEEE Trans. Plasma Sci. , vol. 36, no. 2, pp. 414–422,Apr. 2008.
  20. S. S. Dukhin, "Dielectric properties of disperse systems in Surface andColloid Science", vol. 3, E. Matijevi´c, Ed. New York:Wiley-Interscience,1971, pp. 83–165.
  21. S. Takhasima, Electrical Properties of Biopolimers and Membranes,Bristol, U. K. : Adam Hilger, 1989.
  22. T. Hanai, "Electrical properties of emulsions", in Emulsion Science,P. Sherman, Ed. London, U. K. : Academic, 1968, pp. 353–478.
  23. L. Rayleigh, "On the influence of obstacle arranged in rectangular order upon the properties of a medium", Philos. Mag. , vol. 34, pp. 481–502,1892.
  24. J. C. Maxwell, Treatise on Electricity and Magnetism. London, U. K. :Oxford Univ. Press, 1873.
  25. K. W. Wagner, "Erklärung der dielektrischen Nachwirkungsvorgänge aufGrund Maxwellscher Vorstellungen", Archiv für Elektrotechmik II, vol. 9,pp. 371–387, 1914.
  26. V. H. Pauly and H. P. Schwan, "Über die Impendanc einer Suspensionvon kugelförmigen teilchen mit einer Schale", Z. Naturforsch. , vol. 14b,pp. 125–131, 1959.
  27. L. Rayleigh, "On the influence of obstacle arranged in rectangular orderupon the properties of a medium", Philos. Mag. , vol. 34, pp. 481–502,1892.
  28. Y. Qin, S. Lai, Y. Jiang, T. Yang, and J. Wang, "Transmembrane voltageinduced on a cell membrane in suspensions exposed to an alternating field:A theoretical analysis", Bioelectrochemistry, vol. 67, no. 1, pp. 57–65,Sep. 2005.
  29. K. R. Foster and H. P. Schwan, Rev. Biomed. Eng. 17, 25 (1989).
  30. H. Morgan, T. Sun, D. Holmes, S. Gawad and N. G. Green, J. Phys. D: Appl. Phys. 40, 61 (2007).
  31. Schwan, H. P. ; Takashima, S. Electrical conduction anddielectric behavior in biological systems. Encycl. Appl. Phys. 1993, 5, 177–200.
  32. Fricke, H. The complex conductivity of a suspension of stratified particles of spherical cylindrical form. J. Phys. Chem. 1955, 59, 168.
  33. Foster, K. R. ; Schwan, H. P. Dielectric properties of tissue. CRC Crit. Rev. Biomed. Eng. 1989, 17, 25–104.
  34. Schwan, H. P. ; Morowitz, H. J. Electrical properties of themembranes of the pleuro-pneumonia-like organism A5969, Biophys. J. 1962, 2, 295.
  35. Schwan, H. P. ; Takshima, S. ; Miyamoto, V. K. ; Stoeckenius,W. Electrical properties of phospholipid vesicles. Biophys. J. 1970, 10, 1102.
  36. Kirkwood, J. G. The dielectric polarization of polar liquids. J. Chem. Phys. 1939, 7, 911.
  37. Onsager, L. J. Electric moments of molecules in liquids. Am. Chem. Soc. 1936, 58, 1486–1493.
  38. Mandel, M. ; Odijk, T. Dielectric properties of polyelectrolytesolutions. Ann. Rev. Phys. Chem. 1984, 35, 75–108.
  39. Martinsen, 1. G. ; Grimnes, S. ; Karlsen, J. "Low frequency dielectric dispersion of microporous membranes in electrolyte solution", J. Colloid Interface Sci. 1998, 199, 107–110.
  40. Takashima, S. Electrical Properties of Biopolymers and Membranes; Adam Hilger: Bristol, 1989.
  41. Pethig, R. Dielectric and Electronic Properties of Biological Materials; Wiley: New York, 1979.
  42. Pethig, R. ; Kell, D. B. "The passive electrical properties of biological systems: their significance in physiology", biophysics and biotechnology. Phys. Med. Biol. 1987, 32,933–970.
  43. Schwan, H. P. ; Bothwell, T. P. ; Wiercinski, F. J. "Electricalproperties of beef erythrocyte suspensions at low frequencies", Fed. Proc. Am. Soc. Exp. Biol. 1954, 13, 15.
  44. Schwan, H. P. ; Bothwell, T. P. Electrical properties of the plasma membrane of erythrocytes at low frequencies. Nature 1956, 178, 265.
  45. Schwan, H. P. ; Carstensen, E. L. Dielectric properties of the membrane of lysed erythrocytes. Science 1957, 125, 985.
  46. Fatt, P. An analysis of the transverse electrical impedance of striated muscle. Proc. R. Soc. London, Ser. B 1964, 159, 606–651.
  47. Schwan, H. P. Electrical Properties of Tissue and Cell Suspensions. In Advances in Biological and Medical Physics; Lawrence, J. H. , Tobias, C. A. , Eds. ; Acad. Press: New York, 1957; Vol. V, 147–209.
  48. T. Kotnik, G. Pucihar,M. Rebersek, D. Miklavcic, and L. M. Mir, "Role of pulse shape in cell membrane electropermeabilization," Biochimica et Biophysica Acta, no. 1614, pp. 193–200, Aug. 2003.
  49. I. Meny, N. Burais , F. Buret , and L. Nicolas "Finite-Element Modeling of Cell Exposed to Harmonic and Transient Electric Fields" IEEE transactions on magnetics, vol. 43, no. 4, April 2007.
  50. H. P. Schwan, Dielectrophoresis and rotation of cell, in: E. Neumann, A. E. Sowers, C. A. Jordan
  51. (Eds. ), Electroporation and Electrofusion in Cell Biology, Plenum press, New York, 1989.
  52. U. Zimmermann, G. A. Neil, Electromanipulation of Cells, CRC Press, New York, 1996.
  53. K. H. Schoenbach, et al. , Bioelectrics—new applications for pulsed power technology, IEEE Trans.
  54. S. B. Dev, D. P. Rabussay, G. Widera, G. A. Hoffmann, Medical applications of electroporation, Plasma Sci. 30 (1) (2002).
Index Terms

Computer Science
Information Sciences

Keywords

Dense cell Osteoblast cells Simulation Electroporation cytoplasm Nucleolus Frequency Response Intra-organelle potential.