CFP last date
20 February 2025
Reseach Article

Classification of the Arabic Emphatic Consonants using Time Delay Neural Network

by Kamel Ferrat, Mhania Guerti
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 80 - Number 10
Year of Publication: 2013
Authors: Kamel Ferrat, Mhania Guerti
10.5120/13894-9341

Kamel Ferrat, Mhania Guerti . Classification of the Arabic Emphatic Consonants using Time Delay Neural Network. International Journal of Computer Applications. 80, 10 ( October 2013), 1-6. DOI=10.5120/13894-9341

@article{ 10.5120/13894-9341,
author = { Kamel Ferrat, Mhania Guerti },
title = { Classification of the Arabic Emphatic Consonants using Time Delay Neural Network },
journal = { International Journal of Computer Applications },
issue_date = { October 2013 },
volume = { 80 },
number = { 10 },
month = { October },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume80/number10/13894-9341/ },
doi = { 10.5120/13894-9341 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:54:09.647254+05:30
%A Kamel Ferrat
%A Mhania Guerti
%T Classification of the Arabic Emphatic Consonants using Time Delay Neural Network
%J International Journal of Computer Applications
%@ 0975-8887
%V 80
%N 10
%P 1-6
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This study concerns the use of Artificial Neural Networks (ANNs) in automatic classification of the emphatic consonants of the Standard Arabic Language (SAL). It reinforces the few works directed towards the speech recognition in Standard Arabic. We have applied the Time Delay Neural Network (TDNN) approach which permits a classification of the phonemes by taking into account the dynamic aspect of speech and consequently to overcome problems of coarticulation phenomenon. We have conducted a supervised training method based on Bayesian Regularization (BR) backpropagation coupled with the Levenberg-Marquardt (LM) optimization algorithm, to adjust the synaptic weights in order to minimize the error between the computed output and the desired output for all samples. Based on the results, the proposed Neural Network provides a higher percentage of recognition accuracy of the emphatic phonemes (92. 25%). The choice of our study is quite important. Indeed, efficient phoneme classifiers lead to efficient word classifiers and the ability to recognize phonemes accurately provides the basis for an accurate recognition of words and continuous speech in the future.

References
  1. Kremer, S. 2001. Spatiotemporal connectionist models: A taxonomy and review. Neural Comput. 13, 249-306.
  2. Dreyfus, G. 2004. Réseaux de neurones- Méthodologie et Application. Ed. Eyrolles, France.
  3. Duda, R. O. , Hart, P. E. , and Stork, D. G. 2001. Pattern Classification", John Wiley and sons, second edition.
  4. Bishop, C. M. 1995. Neural Networks for Pattern Recognition. Oxford University Press.
  5. Tebelskis, J. 1995. Speech Recognition Using Neural Networks. PhD. Dissertation, School Of Computer Science, Carnegie Mellon University.
  6. Ahad, A. , Fayyaz, A. , and Mehmood, T. 2002. Speech recognition using multilayer perceptron. Proc. of the IEEE Conference ISCON'02, 1 , 103-109.
  7. Dede G. , and Sazl? M. H. 2010. Speech recognition with artificial neural networks. Digit. Signal Process. 3(20), 763-768.
  8. Gatt, E. , Micallef, J. , Micsllef, P. , and E. Chilton. 2001. Phoneme Classification in Hardware Implemented Neural Networks. Proceedings of the 8th IEEE International Conference on Electronics, Circuits and Systems, Malta.
  9. Hou, J. , Rabiner, L. , and Dusan, S. 2008. Parallel and Hierarchical Speech Feature classification using frame and segment-based methods. Interspeech2008, Brisban, Australia.
  10. Alfozan, A. I. 1989. Assimilation in Classical Arabic A phonological study. Thesis Doctorat of Philosophy, Faculty of Arts of the University of Glasgow.
  11. Roman, A. 1983. Etude de la phonologie et de la morphologie de la koiné arabe. Tome I, Université d'Aix-En-Provence, France.
  12. Cohen, D. 1969. Statut phonologique de l'emphase en arabe. Word 25, 59-69.
  13. Obrecht, D. 1968. Effects of the second formant on the perception of velarization consonants in the Lebanese Arabic. Ed. Mouton, The Hague.
  14. Al-Ani, S. H. 1970. Arabic Phonology. An Acoustical and Physiological Investigation. Ed. Mouton, The Hague.
  15. Al-Tamimi, F. , Alzoubi, F. , and Tarawnah, R. 2009. A Videofluoroscopic Study of the Emphatic Consonants in Jordanian Arabic. Folia Phoniatr Logop. 61, 247-253.
  16. Ferrat, K. 2005. Acoustical study of the Tachdid and the Idgham in Standard Arabic- Application for speech synthesis. Int. Conf. Sci. of Electronic, Technologies of Information and Telecommunication, SETIT2005, Susa, (Tunisia), IEEE France.
  17. Waibel, A. , Hanazawa, T. , Hinton, G. , Shikano, K. , and Lang, K. 1989. Phoneme recognition using time-delay networks. IEEE Trans. Acoustics, Speech and Signal Process. 37(3), 328-339.
  18. Lin, C. T. , Nein, H. , Lin, W. C. 1999. A space-time delay neural network for motion recognition and its application to lipreading. Int. J. Neural Syst. 9 (4), 311-334.
  19. Stokes, D. , and May, G. S. 2000. Real-time control of reactive ion etching using neural networks. IEEE Trans. Semicond. Manuf. 13(4), 469-480.
  20. Pfister, M. , Behnke, S. , Rojas, R. 2000. Recognition of Handwritten ZIP Codes in a Real-World Non-Standard-Letter Sorting System. Appl. Intell. 12(1-2), 95-115.
  21. Le Callet, P. , Viard-Gaudin, C. , Barba, D. 2006. A convolutional neural network approach for video quality assessment. IEEE Trans. Neural Netw. 17(5), 1316-1327.
  22. Stegmayer, G. , Chiotti, O. 2006. Neural networks applied to wireless communications. Artificial Intelligence in Theory and Practice. IFIP 19th World Computer Congress, Santiago, Chile.
  23. Htike, K. , Khalifa, O. 2010. Rainfall Forecasting Models Using Focused Time-Delay Neural Networks. Int. Conf. Computer Communication Engineering (ICCCE 2010), Kuala Lumpur, Malaysia.
  24. Alghamdi, M. 2003. KACST Arabic Phonetic Database. The Fifteenth International Congress of Phonetics Science, Barcelona.
  25. Chia Ai, O. , Hariharan, M. , Yaacob, S. , and Sin Chee, L. 2012. Classification of speech dysfluencies with MFCC and LPCC features. Expert Syst. 39(2), 2157-2165.
  26. Sahidullah, M. D. , and Saha, G. 2012. Design, analysis and experimental evaluation of block based transformation in MFCC computation for speaker recognition. Speech Commun. 54(4), 543-565.
  27. Marquardt, D. 1963. An Algorithm for Least-Squares Estimation of Nonlinear parameters. SIAM J. Appl. Math. 11, 431-441.
  28. Fun, M. , and Hagan, M. 1996. Levenberg-Marquardt Training for Modular Networks. International Conference on Neural Networks, Washington, USA.
  29. Foresee, F. D. , and Hagan, M. T. 1997. Gauss-Newton Approximation to Bayesian Regularization. International Joint Conference on Neural Networks, Houston, USA.
  30. Dhar, V. K. , Tickoo, A. K. , Koul R. , and Dubey, B. P. 2010. Comparative performance of some popular artificial neural network algorithms on benchmark and function approximation problems. Pramana-J. Phys. 74(2), 307-324.
  31. Demuth, H. , and Beale, M. 2000. Neural network toolbox. User's Guide. from. http://www. mathworks. com/access/helpdesk/help/pdf_doc/nnet/nnet. pdf.
  32. Ferrat, K. , Guerti, M. 2011. Apprentissage et Reconnaissance Automatique de la Parole par Réseaux de Neurones Artificiels. Rev. Sciences de l'homme. 4, 57-71.
Index Terms

Computer Science
Information Sciences

Keywords

Arabic phonemes emphatics Speech Recognition Neural Networks TDNN