CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

Article:Fixed Point Theorems in Fuzzy Metric Spaces Using Implicit Relations

by Rajeshri Rana, R. C. Dimri, Anita Tomar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 8 - Number 1
Year of Publication: 2010
Authors: Rajeshri Rana, R. C. Dimri, Anita Tomar
10.5120/1179-1622

Rajeshri Rana, R. C. Dimri, Anita Tomar . Article:Fixed Point Theorems in Fuzzy Metric Spaces Using Implicit Relations. International Journal of Computer Applications. 8, 1 ( October 2010), 16-21. DOI=10.5120/1179-1622

@article{ 10.5120/1179-1622,
author = { Rajeshri Rana, R. C. Dimri, Anita Tomar },
title = { Article:Fixed Point Theorems in Fuzzy Metric Spaces Using Implicit Relations },
journal = { International Journal of Computer Applications },
issue_date = { October 2010 },
volume = { 8 },
number = { 1 },
month = { October },
year = { 2010 },
issn = { 0975-8887 },
pages = { 16-21 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume8/number1/1179-1622/ },
doi = { 10.5120/1179-1622 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T19:56:26.044504+05:30
%A Rajeshri Rana
%A R. C. Dimri
%A Anita Tomar
%T Article:Fixed Point Theorems in Fuzzy Metric Spaces Using Implicit Relations
%J International Journal of Computer Applications
%@ 0975-8887
%V 8
%N 1
%P 16-21
%D 2010
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The aim of this paper is to present common fixed point theorem in fuzzy metric spaces, for four self maps, satisfying implicit relations. The results of B.Singh and M.S.Chauhan[16] are generalized in this paper. Also, the application of fixed points is studied for the Product spaces.

References
  1. Deng Zike, Fuzzy pseudo metric spaces, J. Math. Anal Appl., 86 (1982), 74-95.
  2. B.Fisher, Mapping with a common fixed point, Math seminar Notes, Kobe Univ, 7 (1979), 81-84.
  3. A George & P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets & Systems, 64 (1994), 395-399.
  4. A George & P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets & Systems, 90 (1997), 365-368.
  5. M. Grabiec, Fixed point in Fuzzy metric Spaces, Fuzzy sets & systems, 27 (1988), 245-252.
  6. M. Imdad, S. Kumar & M.S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Radovi Mathematics 11 (2002), 135-143.
  7. K. Iseki, Some applications of Banach type contraction principles, Math. Sem. Notes Kobe Univ. 4 (1976), 211-214.
  8. G.Jungck, Compatible mappings and common fixed points, Int.J.Math.Math.Sci.,9(1986), 771-779.
  9. G.Jungck and B.E.Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure and Appl. Math.29 (1998), no.3, 227-238.
  10. O. Kramosil & J Michalek, Fuzzy metric & Statistical metric spaces, Kybernetica, 11 (1975), 326 - 334.
  11. V. Popa, Some fixed point theorems for weakly compatible mappings, Radovi Mathematics 10 (2001), 245 - 252.
  12. R. N. Mukherjee, On some fixed point theorems, Kyungpook Math. J. 14 (1974), 37–44.
  13. B. Schweizer & A. Sklar, Statistical metric spaces, Pacific J. Math, 10 (1960), 314-334.
  14. B. Singh & S . Jain, Semicompatibility & Fixed point theorems in fuzzy metric spaces using implicit relation, Int. J. Math & Math Sc., 16 (2005), 2617-2629.
  15. S.Sessa, On weak commutativity condition of mapping in fixed point consideration, Publ.Inst.Math. (Beograd) N,S.,32(46), (1982), 149-153.
  16. Bijendra Singh & M. S. Chauhan, Common fixed points of compatible maps in fuzzy metric space, Fuzzy sets & Systems, 115 (2000), 471– 475.
  17. R . Vasuki, Common fixed point in a fuzzy metric space, Fuzzy Sets and Systems, 97 (1998), 395–397.
  18. L. A. Zadeh, Fuzzy sets, Inform. And Control, 8 (1965), 338–353.
Index Terms

Computer Science
Information Sciences

Keywords

Fuzzy metric space -chainable fuzzy metric space compatible mappings weakly compatible mappings implicit relation common fixed point