CFP last date
20 December 2024
Reseach Article

Missing Numbers in K-Graceful Graphs

by P. Pradhan, Kamesh Kumar, A. Kumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 79 - Number 8
Year of Publication: 2013
Authors: P. Pradhan, Kamesh Kumar, A. Kumar
10.5120/13758-1597

P. Pradhan, Kamesh Kumar, A. Kumar . Missing Numbers in K-Graceful Graphs. International Journal of Computer Applications. 79, 8 ( October 2013), 1-6. DOI=10.5120/13758-1597

@article{ 10.5120/13758-1597,
author = { P. Pradhan, Kamesh Kumar, A. Kumar },
title = { Missing Numbers in K-Graceful Graphs },
journal = { International Journal of Computer Applications },
issue_date = { October 2013 },
volume = { 79 },
number = { 8 },
month = { October },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume79/number8/13758-1597/ },
doi = { 10.5120/13758-1597 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:52:27.098776+05:30
%A P. Pradhan
%A Kamesh Kumar
%A A. Kumar
%T Missing Numbers in K-Graceful Graphs
%J International Journal of Computer Applications
%@ 0975-8887
%V 79
%N 8
%P 1-6
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The generalization of graceful labeling is termed as k-graceful labeling. In this paper it has been shown that? C?_(n ),n?0(mod4) is k-graceful for any k?N (set of natural numbers) and some results related to missing numbers for k-graceful labeling of cycle? C?_n, comb? P?_n?1K_1, hairy cycle C_n?1K_1and wheel graph? W?_n have been discussed.

References
  1. Acharya, B. D. 1984. Are all polyminoes arbitrarily graceful?, Proc. First Southeast Asian Graph Theory Colloquium (Eds: K. M. Koh, H. P. Yap), Springer-Verlag, N. Y. , 205-211.
  2. Bagga, J. , Heinz, A. and Majumder, M. M. 2007. Properties of graceful labeling of cycle, Congress Nemrantum, 188, 109-115.
  3. Bu, C. , Zhang, D. , He, B. 1994. k-gracefulness of? C?_m^n, J. Harbin Shipbuilding Eng. Inst. , 15, 95-99.
  4. Gallian, J. A. 2011. A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 18 #DS6.
  5. Golomb, S. W. 1972. How to number a graph, in Graph Theory and Computing, R. C. Read, ed. ,Academic Press, New York 23-37.
  6. Lee, S. M. 1988. All pyramids, lotuses and diamonds are k-graceful,Bull. Math. Soc. Sci, Math. R. S. Roumanie (N. S. ), 32, 145-150.
  7. Liang, Zh. H. , Sun, D. Q. , Xu, R. J. 1993. k-graceful labeling of the wheel graph W_2k , J. Hebei Normal College, 1, 33-44.
  8. Maheo, M. and Thuillier, H. 1982. On d-graceful graphs, ArsCombinat, 13, 181-192.
  9. Pradhan, P. and Kumar, A. 2011. Graceful hairy cycles with pendent edges and some properties of cycles and cycle related graphs, Bulletin of The Calcutta Mathematical Society 103(3) 233 – 246.
  10. Rosa, A. 1966. On certain valuations of the vertices of a graph,Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris, 349-355.
  11. Slater, P. J. 1982. On k-graceful graphs, In: Proc. Of the 13th South Eastern Conference on Combinatorics, Graph Theory and Computing, 53-57.
Index Terms

Computer Science
Information Sciences

Keywords

k-Graceful labeling k-graceful graphs missing numbers.