CFP last date
20 January 2025
Reseach Article

New Techniques for Daubechies Wavelets and Multiwavelets Implementation using Quantum Computing

by Saleem M. R. Taha, Walid A. Mahmood
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 77 - Number 15
Year of Publication: 2013
Authors: Saleem M. R. Taha, Walid A. Mahmood
10.5120/13557-9639

Saleem M. R. Taha, Walid A. Mahmood . New Techniques for Daubechies Wavelets and Multiwavelets Implementation using Quantum Computing. International Journal of Computer Applications. 77, 15 ( September 2013), 7-11. DOI=10.5120/13557-9639

@article{ 10.5120/13557-9639,
author = { Saleem M. R. Taha, Walid A. Mahmood },
title = { New Techniques for Daubechies Wavelets and Multiwavelets Implementation using Quantum Computing },
journal = { International Journal of Computer Applications },
issue_date = { September 2013 },
volume = { 77 },
number = { 15 },
month = { September },
year = { 2013 },
issn = { 0975-8887 },
pages = { 7-11 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume77/number15/13557-9639/ },
doi = { 10.5120/13557-9639 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:48:53.053397+05:30
%A Saleem M. R. Taha
%A Walid A. Mahmood
%T New Techniques for Daubechies Wavelets and Multiwavelets Implementation using Quantum Computing
%J International Journal of Computer Applications
%@ 0975-8887
%V 77
%N 15
%P 7-11
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, new techniques to implement the Daubechies wavelets and multiwavelets are presented using quantum computing synthesis structures. Also, a new quantum implementation of inverse Daubechies multiwavelet transform is proposed. The permutation matrices, particular unitary matrices, play a pivotal role. The particular set of permutation matrices arising in quantum wavelet and multiwavelet transforms is considered, and efficient quantum circuits that implement them are developed. This allows the design of efficient and complete quantum circuits for the quantum wavelet and multiwavelet transforms.

References
  1. Terraneo, M. , and Shepelyansky, D. L. 2003. Imperfection effects for multiple applications of the quantum wavelet transform. Physical Review Letters, 90 (25), 257902-(1-4).
  2. Keinert, F. 2004. Wavelets and multiwavelets. Chapman & Hall/CRC.
  3. Daubechies, I. 1992. Ten lectures on wavelets. SIAM, Philadelphia.
  4. Fijany, A. and Williams, C. P. 1998. Quantum wavelet transforms: fast algorithms and complete circuits. 1st NASA International Conference on Quantum Computing and Communication, Palm Spring, CA, (Feb. 17-21, 1998). Available: www. arXiv:quant-ph/9809004v1,1998.
  5. Imre, S. , and Balazs. F. 2005. Quantum computing and communications: an engineering approach. John Wiley & Sons Ltd.
  6. Kaye, P. , Laflamme, R. , and Mosca, M. 2007. An introduction to quantum computing. Oxford University Press Inc.
  7. Nielsen, M. A. , and Chuang, I. L. 2000. Quantum computation and quantum information. Cambridge University Press, Cambridge, UK.
  8. Jozsa, R, 1997. Quantum algorithms and the Fourier transform. Los Alamos preprint archive. Available:http://xxx. Lanl. Gov/archive/quant-ph/9707033,1997.
  9. Barenco, A. , Ekert, A. , Suominen, K-A, and Torma, P. 1996. Approximate quantum Fourier transform and decoherence. Physical Review A, 54 (139), (Jan. 21, 1996). Available: www. arXiv:quant-ph/9601018v1,1996.
  10. Høyer, P. 1997. Efficient quantum transforms. (Feb. 12, 1997). Available: http://xxx. lanl. gov/archive/quant-ph/9702028,1997.
  11. Klappenecker, A. 1999. Wavelets and wavelet packets on quantum computers. (Sep. 3, 1999). Available: http://xxx. Lanl. gov/archive/quant-ph/9909014v1,1999.
  12. Vedral, V. , Barenco, A. , and Ekert, A. 1995. Quantum network for elementary arithmetic operations. Physical Review A, 54 (147). Available: www. arXiv. org/quant-ph/9511018v1,1995
Index Terms

Computer Science
Information Sciences

Keywords

Quantum Circuits Quantum Computing Wavelet Transforms Multiwavelet Transforms