CFP last date
20 January 2025
Reseach Article

An Amendment to FSM based Interleaver for WLAN and WiMAX in VHDL

by Jaikaran Singh, Mukesh Tiwari, Deepak Dehriya
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 76 - Number 9
Year of Publication: 2013
Authors: Jaikaran Singh, Mukesh Tiwari, Deepak Dehriya
10.5120/13274-0812

Jaikaran Singh, Mukesh Tiwari, Deepak Dehriya . An Amendment to FSM based Interleaver for WLAN and WiMAX in VHDL. International Journal of Computer Applications. 76, 9 ( August 2013), 13-21. DOI=10.5120/13274-0812

@article{ 10.5120/13274-0812,
author = { Jaikaran Singh, Mukesh Tiwari, Deepak Dehriya },
title = { An Amendment to FSM based Interleaver for WLAN and WiMAX in VHDL },
journal = { International Journal of Computer Applications },
issue_date = { August 2013 },
volume = { 76 },
number = { 9 },
month = { August },
year = { 2013 },
issn = { 0975-8887 },
pages = { 13-21 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume76/number9/13274-0812/ },
doi = { 10.5120/13274-0812 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:45:26.773033+05:30
%A Jaikaran Singh
%A Mukesh Tiwari
%A Deepak Dehriya
%T An Amendment to FSM based Interleaver for WLAN and WiMAX in VHDL
%J International Journal of Computer Applications
%@ 0975-8887
%V 76
%N 9
%P 13-21
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In Wireless communication is one among the foremost vivacious analysis areas within the communication field these days. This paper presents the implementation of FSM based WLAN and modified FSM based WiMAX interleaver in VHDL. For WLAN the implemented interleaver is compared with the available works. A modification in the FSM of address generator for WiMAX interleaver provides a significant 35. 8% enhancement in terms of logic cells and 22% enhancement in terms of slice flip flops used, as compared to available work [41]. The circuit parameters and simulation results obtained using ModelSim XE II software are also presented.

References
  1. Jha, U. S. and Prasad, R. , 2007. OFDM towards fixed and mobile broadband wireless access. London, Artech House Publisher, pp. 1-67.
  2. Konhauser, W. , 2006, Broadband wireless access solutions progressive challenges and potential value of next generation mobile networks, International Conference on Wireless Personal Communications, vol 37, May 2006, pp. 243-259.
  3. Andrews, J. G. , Ghosh, A. and Muhammad, R. , 2007. Fundamentals of WiMAX: Understanding broadband wireless networking. Upper Saddle River, NJ (Prentice Hall Communications Engineering and Emerging Technologies Series), Prentice Hall PTR.
  4. Ghosh, A. , Wolter, D. R. , Andrews, J. G. and Chen, R. , 2005. Broadband wireless access with WiMAX/802. 16: current performance benchmarks and future potential. IEEE Communication Magazine, vol. 43, pp. 129–36, Feb. 2005
  5. Neubaus, Andre. , Freudenberges, Jurgen and Kuhn, Volker, 2007. Coding theory, algorithms, architectures and application. Wiley & sons inc.
  6. Haykin, Simon, Communication systems. 4th edition. New York. John Wiley & sons Inc.
  7. Wicker S. B. , 1995. Error control system for digital communication and storage, Englewood Cliffs, Prentice-Hall, Inc.
  8. Tse, D. and Viswanath, P. , 2004. Fundamentals of wireless communication. Cambridge University press.
  9. Hanna, S. A. , 1993, Convolutional interleaving for digital radio communications, Second IEEE International Conference on Personal Communications: Gateway to the 21stmCentury, vol. 1, pp. 443-447, 1993.
  10. Engels, M. , 2002. Wireless OFDM Systems: How to Make Them Work? Springer-Verlag.
  11. Sghaier, A. , Ariebi, S. and Dony, B. , 2007, A pipelined implementation of OFDM transmission on reconfigurable platforms, CCECE08 Conference, Dec, 2007.
  12. Chang, K. , Sobelman, G. , Saberinia, E. and Tewfik, A. , 2004, Transmitter architecture for pulsed OFDM, in the proc. of the 2004 IEEE Asia-Pacific conf. on circuits and systems, Vol. 2, Issue 6-9, Tainan, ROC, Dec. 2004
  13. Garcia J. , 2005. FPGA-Based hardware implementations of OFDM modules for IEEE 802 standards: A common design, Tonantzintla, Mexico, Thesis Report.
  14. Brown, S. and Rose, J. , 1996, FPGA and CPLD Architectures: A Tutorial", IEEE design & test of computers, summer 1996, pp. 42-57.
  15. Xilinx, 2004, Spartan-3 FPGA Family: Complete Data Sheet, available at www. xilinx. com.
  16. Shin, M. C. and Park, I. C. 2003, Processor-based turbo interleaver for multiple third-generation wireless standards. IEEE Communications Letters, vol. 7, no. 5, pp. 210–212, 2003.
  17. Ampadu, P. and Kornegay, K. , 2003, An efficient hardware interleaver for 3G turbo decoding, in Proceedings of IEEE Radio and Wireless Conference (RAWCON '03), pp. 199–120, August 2003.
  18. Wang, Z. and Li, Q. , 2007. Very low-complexity hardware interleaver for turbo decoding. IEEE Transactions on Circuits and Systems II, vol. 54, no. 7, pp. 636–640, 2007.
  19. Asghar, R. and Liu, D. , 2008, Very low cost configurable hardware interleaver for 3G turbo decoding, in Proceedings of the 3rd International Conference on Information and Communication Technologies: From Theory to Applications (ICTTA '08), pp. 1–5, Damascus, Syria, April 2008.
  20. Asghar, R. and Liu, D. , 2008, Dual standard re-configurable hardware interleaver for turbo decoding, in Proceedings of the 3rd International Symposium on Wireless Pervasive Computing (ISWPC '08), pp. 768–772, Santorini, Greece, May 2008.
  21. Asghar, R. , Eilert, J. and Liu, D. Memory conflict analysis and implementation of a re-configurable interleaver architecture supporting unified parallel turbo decoding. Journal of Signal Processing Systems. In press.
  22. Horvath, L. , Dhaou, I. B. , Tenhunen, H. and Isoaho, J. , 1999, A novel, high-speed, reconfigurable demapper-symbol deinterleaver architecture for DVB-T, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '99), vol. 4, pp. 382–385, Orlando, Fla, USA, May-June 1999.
  23. Kim, J. B. , Lim, Y. J. and Lee, M. H. , 2001, A low complexity FEC design for DAB, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '01), vol. 4, pp. 522–525, Sydney, Australia, May 2001.
  24. Chang, Y. N. , 2005, Design of an efficient memory-based DVB-T channel decoder, in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '05), vol. 5, pp. 5019–5022, Kaohsiung, Taiwan, May 2005.
  25. Afshari, H. and Kamarei, M. , 2006, A novel symbol interleaver address generation architecture for DVB-T modulator, in Proceedings of the International Symposium on Communications and Information Technologies (ISCIT '06), pp. 989–993, Bangkok, Thailand, October 2006.
  26. Chang, Y. N. and Ding, Y. C. 2007, A low-cost dual-mode deinterleaver design, in Proceedings of IEEE International Conference on Consumer Electronics (ICCE '07), pp. 1–2, Las Vegas, USA, January 2007.
  27. Wu, Y. W. , Ting, P. and Ma, H. P. 2005, A high speed interleaver for emerging wireless communications, in Proceedings of the International Conference on Wireless Networks, Communications and Mobile Computing, vol. 2, pp. 1192–1197, Maui, Hawaii, USA, June 2005.
  28. Asghar, R. and Liu, D. 2009, Low complexity hardware interleaver for MIMO-OFDM based wireless LAN, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '09), pp. 1747–1750, Taipei, Taiwan, May 2009.
  29. Xilinx Inc. , Interleaver/De-Interleaver, Product Specification, v5. 1, DS250, March 2008. available at www. xilinx. com
  30. Altera Inc. , Symbol Interleaver/De-Interleaver Core, Mega core function user's guide, ver. 1. 3. 0, June 2002.
  31. Lattice Semiconductor Inc. , Interleaver/De-Interleaver IP Core, isp Lever Core User's Guide, ipug_61_02. 5, August 2008.
  32. Dioni, L and Benedetto, S. , 2003, Design of prunable S-random interleaver's, International Symposium on Turbo Codes and Related Topics, pp. 279–289, September 2003.
  33. Ferrari, M. , Scalise F. and S. Bellini, 2002, Prunable S-random interleaver, IEEE International Conference on Communications (ICC), vol. 3, pp. 1711–1715,May 2002.
  34. Popovski, P. , Kocarev, L. and Risteski, A. , 2004. Design of flexible-length S-random interleaver for turbo codes. IEEE Communications Letters, vol. 8, no. 7, pp. 461–463, July 2004.
  35. Tell, E. and Liu, D. , 2004, a hardware architecture for a multimode block interleaver, ICCSC, Moscow, Russia, June 2004.
  36. Sghaier, Ariebi, S. and Dony, B. , 2007, A pipelined implementation of OFDM transmission on reconfigurable platforms, CCECE08 Conference, pp. 801-804, Dec. 2007.
  37. Asghar, R. and Liu, D. , 2009. Low complexity multimode interleaver core for WiMAX with support for convolutional interleaving. International Journal of Electronics, Communication and Computer Engineering, vol. 1, no. 1 Paris, pp. 20-29, 2009.
  38. Upadhyaya, B. K. and Sanyal, S. K. , 2009. VHDL modeling of convolutional interleaver-deinterleaver for efficient FPGA implementation. International Journal of Recent Trends in Engineering, Academy Publisher, Finland, Vol 2, No. 6, November, pp. 66-68, 2009.
  39. Khater, A. A. , Khairy M. M. , and Habib, S. E. D. , 2009, Efficient FPGA implementation for the IEEE 802. 16e interleaver, International Conference on Microelectronics, Morocco, pp. 181-184, 2009.
  40. Upadhyaya, B. K. , Misra, I. S. and Sanyal, S. K. , 2010, Novel design of address generator for WiMAX multimode interleaver using FPGA based finite state machine, ICCIT 2010, AUST, Dhaka, Dec. , 2010.
  41. Upadhyaya, B. K. and Sanyal, S. K. , 2011, Design of a novel design of a FSM based reconfigurable multimode interleaver for WLAN Application, Devices and Communication (ICDeCOM) Mesra, IEEE conference20
Index Terms

Computer Science
Information Sciences

Keywords

WLAN FSM WiMAX VHDL Xilinx ModelSim.