We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Convergence of a Class of Deficient Discrete Cubic Splines

by S. S. Rana, Mridula Dube, Preeti Tiwari
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 76 - Number 3
Year of Publication: 2013
Authors: S. S. Rana, Mridula Dube, Preeti Tiwari
10.5120/13226-0652

S. S. Rana, Mridula Dube, Preeti Tiwari . Convergence of a Class of Deficient Discrete Cubic Splines. International Journal of Computer Applications. 76, 3 ( August 2013), 12-18. DOI=10.5120/13226-0652

@article{ 10.5120/13226-0652,
author = { S. S. Rana, Mridula Dube, Preeti Tiwari },
title = { Convergence of a Class of Deficient Discrete Cubic Splines },
journal = { International Journal of Computer Applications },
issue_date = { August 2013 },
volume = { 76 },
number = { 3 },
month = { August },
year = { 2013 },
issn = { 0975-8887 },
pages = { 12-18 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume76/number3/13226-0652/ },
doi = { 10.5120/13226-0652 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:44:55.409410+05:30
%A S. S. Rana
%A Mridula Dube
%A Preeti Tiwari
%T Convergence of a Class of Deficient Discrete Cubic Splines
%J International Journal of Computer Applications
%@ 0975-8887
%V 76
%N 3
%P 12-18
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In the present paper, the existence and uniqueness of deficient discrete cubic spline interpolant by matching the given function and first order difference at the intermediate points between successive mesh points for a uniform mesh has been discussed and also a error estimate concerning this deficient discrete cubic spline interpolant is obtained

References
  1. Astore, P. H. and Duries, C. S. 1974 Discrete splines, Numer. Math. , 22, 393-402.
  2. Boneva, K. , Kendall, W. and Stefanov, I. 1971 Spline transformation, j. Roy. Statist. Soc. Ser. B. 33, 1 ? 70.
  3. Dikshit, H. P. and Powar, P. L. 1982 Discrete cubic spline interpolation, Numer, Math. 40, 71?78.
  4. Dikshit, H. P. and Rana, S. S. 1987 Discrete cubic spline interpolation over a non-uniform mesh, Rocky Mountain Jour. of Math, 17, 709 ? 718.
  5. Dikshit, H. P. , Sharma, A. and Tzimbalario, J. 1984 Asymptotic error expansion for spline interpolation,Canada. Math. Bull. 27, 337?344.
  6. Jia , R. Q. 1983 Total positivity of the discrete spline collocation matrix, J. Approx. Theo. 39, 15- 23.
  7. Lyche, T. 1975 Discrete cubic spline interpolation, Report RRI 5, University of Oslo.
  8. Lyche, T. 1976 Discrete cubic spline interpolation, BIT, 16, 281 ? 290.
  9. Malcom, M. A. 1973 Nonlinear spline functions,quad Report Stam. CS, Stanford Univ. 197, 372-373.
  10. Mangasarian, O. L. and Schumaker, L. L. 1971 Discrete spline via mathematical programming, SIAM Jour. Control , 9, 174 ? 183.
  11. Rana, S. S. 1984 Discrete cubic X-spline interpolation,J. Orissa Math. Soc. , 3, 67 ? 75.
  12. Rana, S. S. , and Dubey, Y. P. ,Local behaviour of the deficient discrete cubic spline interpolation, Jour. Approx. Theo. , 86(1996), 120 ? 127.
  13. Schumaker, L. L. 1973 Constructive aspects of discrete polynomial spline functions, J. of Approx. Theory (G. G. Lorcut 2 ed. ), Academic Press, New York.
Index Terms

Computer Science
Information Sciences

Keywords

Discrete cubic spline Difference Operators Convergence Error bounds Continuity