CFP last date
20 February 2025
Reseach Article

On (h, m)-Anti-Fuzzy Subrings

by B. Anitha, D. Sivakumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 75 - Number 8
Year of Publication: 2013
Authors: B. Anitha, D. Sivakumar
10.5120/13135-0499

B. Anitha, D. Sivakumar . On (h, m)-Anti-Fuzzy Subrings. International Journal of Computer Applications. 75, 8 ( August 2013), 45-47. DOI=10.5120/13135-0499

@article{ 10.5120/13135-0499,
author = { B. Anitha, D. Sivakumar },
title = { On (h, m)-Anti-Fuzzy Subrings },
journal = { International Journal of Computer Applications },
issue_date = { August 2013 },
volume = { 75 },
number = { 8 },
month = { August },
year = { 2013 },
issn = { 0975-8887 },
pages = { 45-47 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume75/number8/13135-0499/ },
doi = { 10.5120/13135-0499 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:43:47.013207+05:30
%A B. Anitha
%A D. Sivakumar
%T On (h, m)-Anti-Fuzzy Subrings
%J International Journal of Computer Applications
%@ 0975-8887
%V 75
%N 8
%P 45-47
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper we introduce the notions of ( ; )-anti-fuzzy subrings, studied some properties of them and discussed the product of them.

References
  1. S. K. Bhakat and P. Das, (2;2 _q)-fuzzy group Fuzzy Sets and Systems 80(1996) 359-368.
  2. S. K. Bhakat and P. Das, (2; 2 _q)-fuzzy normal, quasi normal and maximal sub-groups Fuzzy Sets and Systems 112(2000) 299-312.
  3. S. K. Bhakat, On the definitions of fuzzy group, Fuzzy Sets and Systems 51(1992) 235-241.
  4. B. Dong, Direct product of anti-fuzzy subgroups, J Shaoxing Teachers College 5(1992) in Chinese 29-34.
  5. W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 59(1993) 205-210.
  6. Rajeshkumar, Fuzzy Algebra, Publication Division, University of Delhi 1(1993).
  7. Z. Shen, The anti-fuzzy subgroup of a group, J. Liaoning Normat University (Nat. Sci. ) 18(2) (1995) in Chinese 99- 101.
  8. B, Yao, ( ; )-fuzzy normal subgroups and ( ; )-fuzzy quotients subgroups, The Journal of Fuzzy Mathematics 13 (3) (2005) 695-705.
  9. B, Yao, ( ; )-fuzzy subrings and ( ; )-fuzzy ideals, The Journal of Fuzzy Mathematics 15 (4) (2007) 981-987.
  10. Yuming Feng and Bingxue Yao, On ( ; )-anti-fuzzy subgroups, Journal of Inequalities and Applications 10, 1186/1029-242X-2012-78.
  11. L. A. Zadeh, Fuzzy Set, Information and Control 8 (1965) 338-353.
Index Terms

Computer Science
Information Sciences

Keywords

( )-anti-fuzzy subring ( )-anti-fuzzy ideal product homomorphism.