We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Interference Avoidance Mechanisms in Bluetooth - A Comparative Study

by Sughasiny M, Dhanapal R
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 75 - Number 18
Year of Publication: 2013
Authors: Sughasiny M, Dhanapal R
10.5120/13351-0837

Sughasiny M, Dhanapal R . Interference Avoidance Mechanisms in Bluetooth - A Comparative Study. International Journal of Computer Applications. 75, 18 ( August 2013), 37-42. DOI=10.5120/13351-0837

@article{ 10.5120/13351-0837,
author = { Sughasiny M, Dhanapal R },
title = { Interference Avoidance Mechanisms in Bluetooth - A Comparative Study },
journal = { International Journal of Computer Applications },
issue_date = { August 2013 },
volume = { 75 },
number = { 18 },
month = { August },
year = { 2013 },
issn = { 0975-8887 },
pages = { 37-42 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume75/number18/13351-0837/ },
doi = { 10.5120/13351-0837 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:44:37.213066+05:30
%A Sughasiny M
%A Dhanapal R
%T Interference Avoidance Mechanisms in Bluetooth - A Comparative Study
%J International Journal of Computer Applications
%@ 0975-8887
%V 75
%N 18
%P 37-42
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Bluetooth is a short range operating technology that helps in the exchange of data. Faster and efficient communications using a Bluetooth device is mandatory, since it has resource limitations. Service discovery delays pose a major problem when considering the Bluetooth devices. Our paper provides a comparative study that discusses efficient mechanisms to reduce these delays by providing a better service discovery process. Further, we also discuss mechanisms that help improve the power consumption.

References
  1. Fanhua Shang a,n, L. C. Jiao a, JiarongShi a, FeiWang b, MaoguoGong a, "Fast Affinity Propagation Clustering: A Multilevel Approach", doi:10. 1016/j. patcog. 2011. 04. 032, Elsevier Pattern Recognition, 45, 474–486, (2012).
  2. Kiri Wagsta, Claire Cardie, Seth, Stefan Schroedl, "Constrained K-means Clustering with Background Knowledge", Proceedings of the Eighteenth International Conference on Machine Learning, p. 577-584, (2001).
  3. Alan D. Amis, Ravi Prakash, Thai H. P. Vuong, Dung T. Huynh, "Max-Min D-Cluster Formation in Wireless Ad Hoc Networks", (2000).
  4. Seung-Hwan Lee, Yong-Hwan Lee, "Adaptive Frequency Hopping and Power Control Based on Spectrum Characteristic of Error Sources in Bluetooth Systems", Elsevier Computers and Electrical Engineering, 36, 341–351, doi:10. 1016/j. compeleceng. 2009. 03. 011, (2010).
  5. Hoi Kit Yip, Yu-Kwong Kwok, "Practical Channel State Aware And Cooperative Packet Scheduling Disciplines For Coordinating Colocated Bluetooth And IEEE 802. 11b Devices", Elsevier Computer Communications, 30, 1569–1587, doi:10. 1016/j. comcom. 2007. 01. 010, (2007).
  6. Inn Inn Er, Winston K. G. Seah, "Performance Analysis of Mobility-Based D-Hop (Mobdhop) Clustering Algorithm For Mobile Ad Hoc Networks", Elsevier Computer Networks, 50, 3375–3399, doi:10. 1016/j. comnet. 2005. 12. 013, (2006).
  7. Sami Ben Cheikh, Tim Esemanny and Horst Hellbr¨uck, "SAFH – Smooth Adaptive Frequency Hopping".
  8. Michael Cho-Hoi Chek and Yu-Kwong Kwok, "On Adaptive Frequency Hopping to Combat Coexistence Interference between Bluetooth and IEEE 802. 11b with Practical Resource Constraints", Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN'04), 1087-4089/04, IEEE, (2004).
  9. Michael Cho-Hoi Chek, Yu-Kwong Kwok, "Design And Evaluation of Practical Coexistence Management Schemes For Bluetooth And IEEE 802. 11b Systems", Elsevier Computer Networks 51, 2086–2103, doi:10. 1016/j. comnet. 2006. 10. 009, (2007).
  10. Eric Lawrey, Cornelis Jan Kikkert, "Adaptive Frequency Hopping for Multiuser OFDM", Second International Conference on Information, Communications & Signal Processing, ICICS'99, Singapore, 7-10 December, (1999).
  11. Jong-Woon Yoo, Member, IEEE, and Kyu Ho Park, "A Cooperative Clustering Protocol for Energy Saving of Mobile Devices with WLAN and Bluetooth Interfaces", IEEE Transactions on Mobile Computing, Vol. 10, No. 5, April (2011).
  12. Sasikanth Avancha, Anupam Joshi, Timothy Finin, "Enhancing the Bluetooth Service Discovery Protocol".
  13. Igor Sedov1, Stephan Preuß2, Clemens Cap3, Marc Haase1, Dirk Timmermann, "Time and Energy Efficient Service Discovery in Bluetooth".
  14. M. Sughasiny and Dr. R. Dhanapal, "Performance Evaluation of An Anternative Controller For Bluetooth Service Discovery", ICTACT Journal on Communication Technology-Volume: 3, Issue: 2, pp. 529-534, (2012).
  15. M. Sughasiny and R. Dhanapal, "Performance Improvisation for Bluetooth Service Discovery Using Single Hop and Multi Hop Methods", ICTACT Journal 0n Communication Technology, June, Volume: 03, Issue: 02, Issn: 2229-6948(Online), (2012).
  16. Andrew Dursch, David C. Yen, Dong-Her Shih, "Bluetooth Technology: An Exploratory Study of The Analysis And Implementation Frameworks", Elsevier Computer Standards & Interfaces 26, 263–277, doi:10. 1016/j. csi. 2003. 12. 005, (2004).
  17. R. Mettala. Bluetooth Protocol Architecture. http://www. bluetooth. com/developer/whitepaper/, (1999).
  18. C. -F. Chiasserini, R. R. Rao, "Coexistence mechanisms for interference mitigation in the 2. 4-GHz ISM band", IEEE Transactions Wireless Communications 2 (5), 964–975, IEEE, (2003).
  19. G. Ennis, "Impact of Bluetooth on 802. 11 Direct Sequences", IEEE 802. 11-98/319, (1998).
  20. Y. -K. Kwok, Time-domain, frequency-domain, and network level resource management schemes in Bluetooth networks, in: Mihaela Cardei, Ionut Cardei, Ding-Zhu Du (Eds. ), Resource Management in Wireless Networks, Kluwer Academic Publishers, (2004).
  21. N. Golmie, R. E. Van Dyck, A. Soltanian, "Interference of Bluetooth and IEEE 802. 11: Simulation Modeling And Performance Evaluation", in: Proc. 4th ACM International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 11–18, (2001).
  22. G. Pei, M. Gerla, X. Hong, C. -C. Chiang, "A Wireless Hierarchical Routing Protocol with Group Mobility", in: Proc. IEEE WCNC '99, pp. 1538–1542, (1999).
  23. G. Chinn et al. , "Mobile PC platforms enabled with intel Centrino Mobile Technology", Intel Technology Journal 7 (2), (2003).
  24. D. P. Bovet, M. Cesati, "Understanding the Linux Kernel", First ed. , OR eilly and Associates, (2001).
  25. Z. Jiang, V. C. Leung, and V. W. Wong, "Reducing Collisions Between Bluetooth Piconets By Orthogonal Hop Set Partitioning", in Proc. IEEE Radio and Wireless Conference RAWCON, (2003).
  26. L. Stabellini, L. Shi, A. A. Rifai, J. Espino, and V. Magoula, "A new probabilistic approach for adaptive frequency hopping," in 20th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications PIMRC. , pp. 2147–2151, IEEE, (2009).
  27. S. Luca, "Toward Reliable Wireless Sensor Networks: Energy-Aware Distributed Interference Management for Unlicensed Bands", Ph. D. dissertation, KTH, Communication Systems, CoS, (2010).
  28. Q. Pang and V. C. Leung, "Improved channel classification and scheduling for non-collaborative bluetooth, WLAN coexistence," IEEE 63rd Vehicular Technology Conference, (2006).
  29. "WPANs specifications", [http://standards. ieee. org/about/get/802/802. 15. html], online; accessed 18-November, (2011).
  30. P. Popovski, H. Yomo, R. Prasad, and S. Member, "Dynamic adaptive frequency hopping for mutually interfering wireless personal area networks", ACM Mobihoc, vol. 4, pp. 991–1003, (2004).
  31. S. M. , S. S. , and G. D. , "Coexistence of IEEE 802. 11b and Bluetooth: an integrated performance analysis", Springer Science, (2008).
Index Terms

Computer Science
Information Sciences

Keywords

Service discovery Bluetooth Adaptive frequency hopping Max-Min D Clustering