CFP last date
20 February 2025
Reseach Article

Best Error Bounds of Quartic Spline Interpolation

by Y. P. Dubey, K. K. Nigam
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 75 - Number 1
Year of Publication: 2013
Authors: Y. P. Dubey, K. K. Nigam
10.5120/13079-0320

Y. P. Dubey, K. K. Nigam . Best Error Bounds of Quartic Spline Interpolation. International Journal of Computer Applications. 75, 1 ( August 2013), 44-48. DOI=10.5120/13079-0320

@article{ 10.5120/13079-0320,
author = { Y. P. Dubey, K. K. Nigam },
title = { Best Error Bounds of Quartic Spline Interpolation },
journal = { International Journal of Computer Applications },
issue_date = { August 2013 },
volume = { 75 },
number = { 1 },
month = { August },
year = { 2013 },
issn = { 0975-8887 },
pages = { 44-48 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume75/number1/13079-0320/ },
doi = { 10.5120/13079-0320 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:43:41.106250+05:30
%A Y. P. Dubey
%A K. K. Nigam
%T Best Error Bounds of Quartic Spline Interpolation
%J International Journal of Computer Applications
%@ 0975-8887
%V 75
%N 1
%P 44-48
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we have obtained existence, uniqueness, best error bound and convergence properties of C2 Deficient Quartic Spline Interpolation.

References
  1. Deboor, C. A. Practical Guide to Splines, Applied Mathematical Science, Vol. 27 Spoinger, Varlag, New York 1979.
  2. Hall, C. A. and Meyer, W. W. , J. Approximation Theory 16 (1976), pp 105-122.
  3. Howell, G. and Verma, A. K. Best Error Bound of Quartic Spline Interpolation, J. Approx. Theory 58 (1989), 58-67.
  4. Davis, P. J. Interpolation and approximation, New York, 1969.
  5. Dubey, Y. P. Best Error Bounds of Spline of degree six. Int. Jour. of Mathematical Ana. Vol. 5 (2011), pp. 21-24.
  6. Gemlling, R. H. J. and Meyling, G. in Interpolation by Bivartate Quintic Splines of Class Construction of Theory of function 87 (ed) Sender et al (1987) 152-61.
  7. Rana, S. S. and Dubey, Y. P. Best ERror Bounds of Quintic Spline Interpolation J. Pune and App. Math 28 (10) 1937-44 (1997).
  8. Rana, S. S. and Dubey, Y. P. Best Error Bounds of deficient quartic spline interpolation, Indian Journal Pune and Appl. Math 30(4) (1999), 385-393.
  9. Meir, A. and Sharma, A. Convergence of a class of interpolatory spline J. Approx. Theory (1968), pp. 243-250.
Index Terms

Computer Science
Information Sciences

Keywords

Ø 41A05 65D07