CFP last date
20 December 2024
Reseach Article

Comparison of Adomian Decomposition and Taylor Expansion Methods for the Solutions of Fractional Integro-Differential Equations

by M. H. Saleh, S. M. Amer, M. A. Shalaan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 74 - Number 17
Year of Publication: 2013
Authors: M. H. Saleh, S. M. Amer, M. A. Shalaan
10.5120/12981-0280

M. H. Saleh, S. M. Amer, M. A. Shalaan . Comparison of Adomian Decomposition and Taylor Expansion Methods for the Solutions of Fractional Integro-Differential Equations. International Journal of Computer Applications. 74, 17 ( July 2013), 44-49. DOI=10.5120/12981-0280

@article{ 10.5120/12981-0280,
author = { M. H. Saleh, S. M. Amer, M. A. Shalaan },
title = { Comparison of Adomian Decomposition and Taylor Expansion Methods for the Solutions of Fractional Integro-Differential Equations },
journal = { International Journal of Computer Applications },
issue_date = { July 2013 },
volume = { 74 },
number = { 17 },
month = { July },
year = { 2013 },
issn = { 0975-8887 },
pages = { 44-49 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume74/number17/12981-0280/ },
doi = { 10.5120/12981-0280 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:42:35.482868+05:30
%A M. H. Saleh
%A S. M. Amer
%A M. A. Shalaan
%T Comparison of Adomian Decomposition and Taylor Expansion Methods for the Solutions of Fractional Integro-Differential Equations
%J International Journal of Computer Applications
%@ 0975-8887
%V 74
%N 17
%P 44-49
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper will be compared between Adomian decomposition method (ADM) and Taylor expansion method (TEM) for solving (approximately) a class of fractional integro-differential equations. Numerical examples are presented to illustrate the efficiency and accuracy of the proposed methods.

References
  1. A. Arikoglu, I. Ozkol, Solution of fractional integro-differential equations by using fractional differential transform, Chaos, Solutions and Fractals, 40 (2009) 521-529.
  2. Adam Loverro, Fractional calculus: History, Definitions and Application for the Engineer. (2004).
  3. A. Wazwaz, Areliable modification of Adomian decomposition method, Applied Mathematics and Computation, 102(1) (1999) 77-86.
  4. E. A. Rawashdeh, Numerical of fractional integro-differential equations by collocation method, Appl. Math. Comput. 176 (2006) 1-6.
  5. E. A. Rawashdeh, Legendre Wavelet method for fractional integro-differential equations, Applied Mathematics Sciences. 5 (2011) 2467-2474.
  6. F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, A carpinten and F. Mainardi (Eds), Fractals an Fractional Calulus in Continuum Mechanics, Spriger-verlag, New York, (1997) 291-348.
  7. I. Podlubny, Fractional Differential Equations, Academic press, New York, 1999.
  8. Jose' Paulo Carvalho dos Santos, M. Mallika Arjunan, Calaudio Cuevas, Existence results for fractional neutral integro-differential equations, Computers and Mathematics with Applications, 62 (2011) 1275-1283.
  9. K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential, Willey, New York, 1993.
  10. L. Huang, X. Li, Y. Zhao, X. Duan, Approximate solution of fractional integro-differential equations by Taylor expansion method, Computers and Mathematics with Application, 62 (2011) 1127-1134.
  11. M. Caputo, Linear models of dissipation whose Q is almost frequecy independent-II, Geophysical Jornal of the Royal Astronomical Society, 13 (1967) 529-539.
  12. M. T. Rashed, Numerical solution of a special type of integro-differential equations, Appl. Math. Comput, 143 (2003) 73-88.
  13. R. C. Mittal, R. Nigam, Solution of fractional integro-differential equations by Adomian decomposition method, Int. J. of Appl. Math. and Mech, 4 (2) (2008) 87-94.
  14. S. M. Momani, local and global existence theorems integro-differential equations, Jornal of Fractional Calculus, 18 (2000) 81-86.
  15. suayip Yüzbasl, Mehmer Sezer, Bayram Kemancl, Numerical solutions of integro-differential equations and application of apopulation model with an improved Legendere method, Applied Mathematics Modelling, 37 (2013) 2086-2101.
  16. W. E. Olmstead, R. A. Handelsman, Diffusion in a semi-infinite region with non linear dissipation, SIAM Rev. , 18 (1976) 275-291.
Index Terms

Computer Science
Information Sciences

Keywords

Fractional integro-differential equations Adomian decomposition method Taylor expansion method Caputo fractional derivative Riemann-Liouville.