CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

Comparison of Adomian Decomposition and Taylor Expansion Methods for the Solutions of Fractional Integro-Differential Equations

by M. H. Saleh, S. M. Amer, M. A. Shalaan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 74 - Number 17
Year of Publication: 2013
Authors: M. H. Saleh, S. M. Amer, M. A. Shalaan
10.5120/12981-0280

M. H. Saleh, S. M. Amer, M. A. Shalaan . Comparison of Adomian Decomposition and Taylor Expansion Methods for the Solutions of Fractional Integro-Differential Equations. International Journal of Computer Applications. 74, 17 ( July 2013), 44-49. DOI=10.5120/12981-0280

@article{ 10.5120/12981-0280,
author = { M. H. Saleh, S. M. Amer, M. A. Shalaan },
title = { Comparison of Adomian Decomposition and Taylor Expansion Methods for the Solutions of Fractional Integro-Differential Equations },
journal = { International Journal of Computer Applications },
issue_date = { July 2013 },
volume = { 74 },
number = { 17 },
month = { July },
year = { 2013 },
issn = { 0975-8887 },
pages = { 44-49 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume74/number17/12981-0280/ },
doi = { 10.5120/12981-0280 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:42:35.482868+05:30
%A M. H. Saleh
%A S. M. Amer
%A M. A. Shalaan
%T Comparison of Adomian Decomposition and Taylor Expansion Methods for the Solutions of Fractional Integro-Differential Equations
%J International Journal of Computer Applications
%@ 0975-8887
%V 74
%N 17
%P 44-49
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper will be compared between Adomian decomposition method (ADM) and Taylor expansion method (TEM) for solving (approximately) a class of fractional integro-differential equations. Numerical examples are presented to illustrate the efficiency and accuracy of the proposed methods.

References
  1. A. Arikoglu, I. Ozkol, Solution of fractional integro-differential equations by using fractional differential transform, Chaos, Solutions and Fractals, 40 (2009) 521-529.
  2. Adam Loverro, Fractional calculus: History, Definitions and Application for the Engineer. (2004).
  3. A. Wazwaz, Areliable modification of Adomian decomposition method, Applied Mathematics and Computation, 102(1) (1999) 77-86.
  4. E. A. Rawashdeh, Numerical of fractional integro-differential equations by collocation method, Appl. Math. Comput. 176 (2006) 1-6.
  5. E. A. Rawashdeh, Legendre Wavelet method for fractional integro-differential equations, Applied Mathematics Sciences. 5 (2011) 2467-2474.
  6. F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, A carpinten and F. Mainardi (Eds), Fractals an Fractional Calulus in Continuum Mechanics, Spriger-verlag, New York, (1997) 291-348.
  7. I. Podlubny, Fractional Differential Equations, Academic press, New York, 1999.
  8. Jose' Paulo Carvalho dos Santos, M. Mallika Arjunan, Calaudio Cuevas, Existence results for fractional neutral integro-differential equations, Computers and Mathematics with Applications, 62 (2011) 1275-1283.
  9. K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential, Willey, New York, 1993.
  10. L. Huang, X. Li, Y. Zhao, X. Duan, Approximate solution of fractional integro-differential equations by Taylor expansion method, Computers and Mathematics with Application, 62 (2011) 1127-1134.
  11. M. Caputo, Linear models of dissipation whose Q is almost frequecy independent-II, Geophysical Jornal of the Royal Astronomical Society, 13 (1967) 529-539.
  12. M. T. Rashed, Numerical solution of a special type of integro-differential equations, Appl. Math. Comput, 143 (2003) 73-88.
  13. R. C. Mittal, R. Nigam, Solution of fractional integro-differential equations by Adomian decomposition method, Int. J. of Appl. Math. and Mech, 4 (2) (2008) 87-94.
  14. S. M. Momani, local and global existence theorems integro-differential equations, Jornal of Fractional Calculus, 18 (2000) 81-86.
  15. suayip Yüzbasl, Mehmer Sezer, Bayram Kemancl, Numerical solutions of integro-differential equations and application of apopulation model with an improved Legendere method, Applied Mathematics Modelling, 37 (2013) 2086-2101.
  16. W. E. Olmstead, R. A. Handelsman, Diffusion in a semi-infinite region with non linear dissipation, SIAM Rev. , 18 (1976) 275-291.
Index Terms

Computer Science
Information Sciences

Keywords

Fractional integro-differential equations Adomian decomposition method Taylor expansion method Caputo fractional derivative Riemann-Liouville.