CFP last date
20 January 2025
Reseach Article

Face Recognition of Database of Compressed Images using Local Binary Patterns

by Padmaja Vijay Kumar, M. N. Giri Prasad, Padmaja. K. V
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 74 - Number 16
Year of Publication: 2013
Authors: Padmaja Vijay Kumar, M. N. Giri Prasad, Padmaja. K. V
10.5120/12968-9591

Padmaja Vijay Kumar, M. N. Giri Prasad, Padmaja. K. V . Face Recognition of Database of Compressed Images using Local Binary Patterns. International Journal of Computer Applications. 74, 16 ( July 2013), 10-17. DOI=10.5120/12968-9591

@article{ 10.5120/12968-9591,
author = { Padmaja Vijay Kumar, M. N. Giri Prasad, Padmaja. K. V },
title = { Face Recognition of Database of Compressed Images using Local Binary Patterns },
journal = { International Journal of Computer Applications },
issue_date = { July 2013 },
volume = { 74 },
number = { 16 },
month = { July },
year = { 2013 },
issn = { 0975-8887 },
pages = { 10-17 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume74/number16/12968-9591/ },
doi = { 10.5120/12968-9591 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:42:27.559975+05:30
%A Padmaja Vijay Kumar
%A M. N. Giri Prasad
%A Padmaja. K. V
%T Face Recognition of Database of Compressed Images using Local Binary Patterns
%J International Journal of Computer Applications
%@ 0975-8887
%V 74
%N 16
%P 10-17
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Local binary pattern algorithm is used in this work to determine the recognition rate for the images stored in a compressed form in the database. The images are of two types, namely, probe image and the database images. Data base images are the one present in databases like airport servers, government servers etc. , whereas the probe image is the one which is being tested against the database to find the matching picture or record from the database. In this work, the data base images are compressed on the size of the image by several compression levels and each level is tested for the same probe image. The probe image is not compressed while comparison. The simulation results are presented for the recognition rate under different levels of compression.

References
  1. Zhao W. , Chellappa R. , Rosenfeld A. , Phillips P. J. , Face Recognition: A Literature Survey, ACM Computing Surveys, Vol. 35, Issue 4, December 2003, pp. 399-458
  2. Delac K. , Grgic M. , A Survey of Biometric Recognition Methods, Proc. of the 46th International Symposium Electronics in Marine, ELMAR-2004, Zadar, Croatia, 16-18 June 2004, pp. 184-193
  3. Li S. Z. , Jain A. K. , ed. , Handbook of Face Recognition, Springer, New York, USA, 2005
  4. Delac, K. , Grgic, M. (eds. ), Face Recognition, I-Tech Education and Publishing, ISBN 978-3-902613-03-5, Vienna, July 2007, 558 pages
  5. Rakshit, S. , Monro, D. M. , An Evaluation of Image Sampling and Compression for Human Iris Recognition, IEEE Trans. on Information Forensics and Security, Vol. 2, No. 3, 2007, pp. 605-612
  6. Matschitsch, S. , Tschinder, M. , Uhl, A. , Comparison of Compression Algorithms' Impact on Iris Recognition Accuracy, Lecture Notes in Computer Science - Advances in Biometrics, Vol. 4642, 2007, pp. 232-241
  7. Funk, W. , Arnold, M. , Busch, C. , Munde, A. , Evaluation of Image Compression Algorithms for Fingerprint and Face Recognition Systems, Proc. from the Sixth Annual IEEE Systems, Man and Cybernetics (SMC) Information Assurance Workshop, 2005, pp. 72-78
  8. Mascher-Kampfer, A. , Stoegner, H. , Uhl, A. , Comparison of Compression Algorithms' Impact on Fingerprint and Face Recognition Accuracy, Visual Communications and Image Processing 2007 (VCIP'07), Proc. of SPIE 6508, 2007, Vol. 6508, 650810, 12 pages
  9. Elad, M. , Goldenberg, R. , Kimmel, R. , Low Bit-Rate Compression of Facial Images, IEEE Trans. on Image Processing, Vol. 16, No. 9, 2007, pp. 2379-2383
  10. Skodras A. , Christopoulos C. , Ebrahimi T. , The JPEG 2000 Still Image Compression Standard, IEEE Signal Processing Magazine, Vol. 18, No. 5, September 2001, pp. 36-58
  11. Wallace G. K. , The JPEG Still Picture compression Standard, Communications of the ACM, Vol. 34, Issue 4, April 1991, pp. 30-44.
  12. X. Tan and B. Triggs, "Enhanced local texture feature sets for face recognition under dif?cult lighting conditions," Lecture Notes in Computer Science, vol. 4778, p. 168, 2007.
  13. Phillips, P. , Grother, P. , Micheals, R. J. , Blackburn, D. M. , Tabassi, E. , Bone, J. M. : Face recognition vendor test 2002 results. Technical report (2003)
  14. Gong, S. , McKenna, S. J. , Psarrou, A. : Dynamic Vision, From Images to FaceRecognition. Imperial College Press, London (2000)
  15. Phillips, P. J. , Wechsler, H. , Huang, J. , Rauss, P. : The FERET database andevaluation procedure for face recognition algorithms. Image and Vision Computing M 16 (1998) 295–306
  16. C. Shan, S. Gong, P. W. McOwan, Robust facial expression recognition usinglocal binary patterns, in: IEEE International Conference on Image Processing(ICIP), Genoa, vol. 2, 2005, pp. 370–373.
  17. S. Liao, W. Fan, C. S. Chung, D. -Y. Yeung, Facial expression recognition usingadvanced local binary patterns, tsallis entropies and global appearancefeatures, in: IEEE International Conference on Image Processing (ICIP), 2006,pp. 665–668.
  18. X. Feng, M. Pietikäinen, T. Hadid, Facial expression recognition with localbinary patterns and linear programming, Pattern Recognition and ImageAnalysis 15 (2) (2005) 546–548.
  19. G. Zhang, X. Huang, S. Z. Li, Y. Wang, X. Wu, Boosting local binary pattern (lbp)-based face recognition, in: Chinese Conference on Biometric Recognition (SINOBIOMETRICS), 2004, pp. 179–186.
  20. G. Zhao, M. Pietikäinen, Dynamic texture recognition using local binarypatterns with an application to facial expressions, IEEE Transactions on PatternAnalysis and Machine Intelligence 29 (6) (2007) 915–928.
  21. T. Ahonen, A. Hadid, M. Pietikainen, "Face Recognition with LocalBinary Patterns", Computer Vision Proceedings, ECCV 2004, LectureNotes in Computer Science 3021, Springer, 469-481. 22] O. Lahdenoja, M. Laiho, A. Paasio, "Reducing the Feature Vector Lengthin Local Binary Pattern based Face Recognition", Proceedings of theIEEE International Conference on Image Processing (ICIP 2005), Genova,Italy.
  22. P. J. Phillips, H. Wechsler, J. Huang, P. Rauss, "The FERET Databaseand Evaluation Procedure for Face Recognition Algorithms", Image andVision Computing, 16, 1998, 295-306.
  23. T. Ahonen, A. Hadid, and M. Pietik¨ainen. Face recognition with local binary patterns. In Proc. 8th European Conference on Computer Vision (ECCV), Prague, Czech Republic, pages 469–481,2004
  24. X. Huang, S. Z. Li, and Y. Wang. Shape localization based on statistical method using extendedlocal binary pattern. In Proc. Third International Conference on Image and Graphics (ICIG),Hong Kong, China, pages 184–187, 2004.
  25. H. Jin, Q. Liu, H. Lu, and X. Tong. Face detection using improved LBP under bayesian framework. In Proc. Third International Conference on Image and Graphics (ICIG), Hong Kong, China, pages 306–309, 2004.
  26. K. Jonsson, J. Matas, J. Kittler, and Y. P. Li. Learning support vectors for face verification and recognition. In 4th International Conference on Automatic Face and Gesture Recognition, pages 208–213, 2000.
  27. G. Zhang, X. Huang, S. Z. Li, Y. Wang, and X. Wu. Boosting local binary pattern (LBP)-based face recognition. In Proc. Advances in Biometric Person Authentication: 5th Chinese Conference on Biometric Recognition, SINOBIOMETRICS 2004Guangzhou, China, pages 179–186, 2004.
Index Terms

Computer Science
Information Sciences

Keywords

Face recognition compression image compression and face recognition security