CFP last date
20 January 2025
Reseach Article

Dynamic Contrast Enhancement Algorithm

by Amiya Halder
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 74 - Number 12
Year of Publication: 2013
Authors: Amiya Halder
10.5120/12934-9879

Amiya Halder . Dynamic Contrast Enhancement Algorithm. International Journal of Computer Applications. 74, 12 ( July 2013), 1-4. DOI=10.5120/12934-9879

@article{ 10.5120/12934-9879,
author = { Amiya Halder },
title = { Dynamic Contrast Enhancement Algorithm },
journal = { International Journal of Computer Applications },
issue_date = { July 2013 },
volume = { 74 },
number = { 12 },
month = { July },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-4 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume74/number12/12934-9879/ },
doi = { 10.5120/12934-9879 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:42:02.824873+05:30
%A Amiya Halder
%T Dynamic Contrast Enhancement Algorithm
%J International Journal of Computer Applications
%@ 0975-8887
%V 74
%N 12
%P 1-4
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This article describes a dynamic contrast enhancement technique to improve the visual quality of low contrast images. Also, this proposed algorithm is recovered the images from a blurred and darkness specimen of the given area of the images, and get better quality of the images. In this article, Image enhancement is performed using evolutionary algorithm (i. e. Genetic Algorithm). Here, a special type of sigmoid function is used for contrast enhancement. For the best match of this transformation function, genetic algorithm (GA) finds the optimum parameter value of the functions for image enhancement. Experimental result shows that the proposed method gives the better result in comparison to other conventional techniques.

References
  1. D. E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learning. Addision-Wesley, 1989.
  2. Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Pearson Education Asia, sixth indian reprint edition, 2001.
  3. Google Inc. sigmoid function. www. wikipedia. org/wiki/.
  4. A. K. Jain. Fundamentals of digital image processing. Prentice Hall, 1989.
  5. J. DiCarlo and B. Wandell. Rendering high dynamic range images. SPIE Electronic Imaging, 3965:392–401, 2000.
  6. J. R. Jenson. Introductory digital image processing. Prentice Hall, 2005.
  7. A. Rosenfeld and A. C. Kalk. Digital Picture Processing. Prentice Hall, 1982.
  8. M. Srinivas and L. M. Patnaik. Genetic algorithms: A survey. In IEEE Computer Society, pages 17–26, 1994.
  9. J. L. Starck, F. Murtagh, E. Candes, and D. L. Donoho. Gray and color image contrast enhancement by the curvelet transform. IEEE Trans. Im. Proc. , 12:706–717, 2003.
  10. J. A. Stark. Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing, 9(5):889–896, 2000.
  11. J. A. Stark and W. J. Fitzgerald. An alternative algorithm for adaptive histogram equalization. Graphical Models and Image Processing, 56:180–185, 1996.
  12. F. P. P. De Vries. Automatic, adaptive, brightness independent contrast enhancement. Signal Processing, 21:169– 182, 1990.
Index Terms

Computer Science
Information Sciences

Keywords

Image Enhancement Genetic algorithm Contrast Stretching Sigmoid Function