CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

Arithmetic Coding- A Reliable Implementation

by Lakshmi Sasilal, V. K. Govindan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 73 - Number 7
Year of Publication: 2013
Authors: Lakshmi Sasilal, V. K. Govindan
10.5120/12750-9688

Lakshmi Sasilal, V. K. Govindan . Arithmetic Coding- A Reliable Implementation. International Journal of Computer Applications. 73, 7 ( July 2013), 1-5. DOI=10.5120/12750-9688

@article{ 10.5120/12750-9688,
author = { Lakshmi Sasilal, V. K. Govindan },
title = { Arithmetic Coding- A Reliable Implementation },
journal = { International Journal of Computer Applications },
issue_date = { July 2013 },
volume = { 73 },
number = { 7 },
month = { July },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume73/number7/12750-9688/ },
doi = { 10.5120/12750-9688 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:39:25.036854+05:30
%A Lakshmi Sasilal
%A V. K. Govindan
%T Arithmetic Coding- A Reliable Implementation
%J International Journal of Computer Applications
%@ 0975-8887
%V 73
%N 7
%P 1-5
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Arithmetic compression scheme is one of the commonly used techniques to represent more amount of information using the available units of resources. It has been known that arithmetic coding has a better coding efficiency than other compression schemes. However, when used in an error prone environment, the poor error resistance property of the method is a severe disadvantage. It is difficult to locate an error when arithmetic coding is used and a large portion of a data must be discarded when an error occurs. In this paper, a novel technique is proposed to improve the error resilience of arithmetic coding, in which the decoder is less affected by the errors caused in the transmission of data over the network. A comparative study with the basic algorithm demonstrates that the time performance of the error resilient arithmetic coder is somewhat comparable to the basic algorithm.

References
  1. I. H. Witten, R. M. Neal, and J. G. Cleary. "Arithmetic coding for data compression". Commun. ACM. 1987, 30:520-540.
  2. ALISTAIR MOFFAT,RADFORD M. NEAL and IAN H. WITTEN. "Arithmetic Coding Revisited". ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998, Pages 256–294.
  3. G. G. Langdon, and J. J. Rissanen. "A simple general binary source code". IEEE Trans. Inf. Theory. 1982, IT-28:800-803.
  4. J. J. Rissanen, and K. M. Mohiuddin. "A multiplication-free multialphabet arithmetic code". IEEE Trans. Commun. 1989, 37: 93-98.
  5. Shaw-Min Lei. "Efficient multiplication-free arithmetic codes". IEEE Trans. Commun. 1995, 43: 2950-2958.
  6. P. G. Howard, and J. S. Vitter. "Arithmetic coding for data compression". Proc. IEEE. 1994, 82: 857-865.
  7. Bassiouni, M. A. ; Ranganathan, N. ; Mukherjee, A. ; "A scheme for data compression in supercomputers," Supercomputing '88. [Vol. 1]. Proceedings. , vol. , no. , pp. 272-278, 14-18 Nov 1988
  8. Jianjun Zhang and Xingfang Ni. "An Improved Bit-level Arithmetic Coding Algorithm". Journal of Information and Computing Science Vol. 5, No. 3, 2010, pp. 193-198
  9. S. Senthil, S. J Rexiline and L. Robert. "RIDBE: A Lossless, Reversible Text Transformation Scheme for better Compression" International Journal of Computer Applications (0975 – 8887) Volume 51– No. 12, August 2012
  10. Fauzia S. Awan, Nan Zhang, Nitin Motgi, Raja T. Iqbal, and Amar Mukherjee. "LIPT : A Reversible Lossless Text Transform to Improve Compression Performance", Proceedings of the 2001 IEEE Data Compression Conference, IEEE Computer Society Press, Los Alamitos, California. Vol. 481. 2001.
  11. M. Burrows, D. J. Wheeler, M. Burrows, and D. J. Wheeler, "A block-sorting lossless data compression algorithm," Tech. Rep. , 1994.
  12. Redmill, David W. , and David R. Bull. "Error resilient arithmetic coding of still images. " Image Processing, 1996. Proceedings, International Conference on. Vol. 1. IEEE, 1996.
  13. BOYD, C. , CLEARY, J. G. , IRVINE, S. A. , RINSMA MELCHERT, I. , and WITTEN, I. H. : 'Integrating error detection into arithmetic coding', ZEEE Trans. Commun. , 1997,45, (I), pp. 1-3
  14. ELMASRY, G. F. : 'Arithmetic coding algorithm with embedded channel coding', Electron. Lett. , 1997, 33, (20), pp. 1687-1688
  15. Elmasry, G. F. , "Embedding channel coding in arithmetic coding," Communications, IEE Proceedings- , vol. 146, no. 2, pp. 73,78, Apr 1999
  16. Cheng, Zhi-Quan, et al. "An Error-Resilient Arithmetic Coding Algorithm for Compressed Meshes. " Cyberworlds, 2008 International Conference on. IEEE, 2008.
  17. Sun, Yipeng, et al. "Error resilient arithmetic coding for wireless robust image transmission. " Wireless Communications and Signal Processing (WCSP), 2011 International Conference on. IEEE, 2011.
  18. Morita, Hiroyoshi, Ying Zou, and Adriaan J. van Wijngaarden. "Design and analysis of synchronizable error-resilient arithmetic codes. " Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE. IEEE, 2009.
Index Terms

Computer Science
Information Sciences

Keywords

ERAC Arithmetic compression