We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Call for Paper
December Edition
IJCA solicits high quality original research papers for the upcoming December edition of the journal. The last date of research paper submission is 20 November 2024

Submit your paper
Know more
Reseach Article

MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution

by Mohamed A. W. Mahmoud, Ahmed A. Soliman, Ahmed H. Abd Ellah, Rashad M. El-sagheer
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 73 - Number 5
Year of Publication: 2013
Authors: Mohamed A. W. Mahmoud, Ahmed A. Soliman, Ahmed H. Abd Ellah, Rashad M. El-sagheer
10.5120/12735-9617

Mohamed A. W. Mahmoud, Ahmed A. Soliman, Ahmed H. Abd Ellah, Rashad M. El-sagheer . MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution. International Journal of Computer Applications. 73, 5 ( July 2013), 8-14. DOI=10.5120/12735-9617

@article{ 10.5120/12735-9617,
author = { Mohamed A. W. Mahmoud, Ahmed A. Soliman, Ahmed H. Abd Ellah, Rashad M. El-sagheer },
title = { MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution },
journal = { International Journal of Computer Applications },
issue_date = { July 2013 },
volume = { 73 },
number = { 5 },
month = { July },
year = { 2013 },
issn = { 0975-8887 },
pages = { 8-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume73/number5/12735-9617/ },
doi = { 10.5120/12735-9617 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:39:15.041530+05:30
%A Mohamed A. W. Mahmoud
%A Ahmed A. Soliman
%A Ahmed H. Abd Ellah
%A Rashad M. El-sagheer
%T MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution
%J International Journal of Computer Applications
%@ 0975-8887
%V 73
%N 5
%P 8-14
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, the Bayes estimators of the unknown parameters of the Lomax distribution under the assumptions of gamma priors on both the shape and scale parameters are considered. The Bayes estimators cannot be obtained in explicit forms. So we propose Markov Chain Monte Carlo (MCMC) techniques to generate samples from the posterior distributions and in turn computing the Bayes estimators. Point estimation and confidence intervals based on maximum likelihood and bootstrap methods are also proposed. The approximate Bayes estimators obtained under the assumptions of non-informative priors, are compared with the maximum likelihood estimators using Monte Carlo simulations. One real data set has been analyzed for illustrative purposes.

References
  1. A. H. Abd Ellah, Bayesian one sample prediction bounds for the Lomax distribution, Indian J. Pure Appl. Math. 42 (2011), no. 5, 335–356.
  2. A. H. Abd Ellah, Comparison of estimates using record statstics from Lomax model : Bayesian and non Bayesian approaches, J. Stat. Res. Train. Center 3 (2006), 139-158.
  3. M. Ahsanullah, On the record valuse from univariate distributions, National Institute of Standards and Technology Journal of Research, Special Publications 12 (1993), 1-6.
  4. M. Ahsanullah, Introduction to Record Statistics, NOVA Science Publishers Inc. , Hunting ton, New York, 1995.
  5. B. C. Arnold, Pareto Distributions. In: Statistical Distributions in Scientific Work, International Co-operative Publishing House, Burtonsville, MD, 1983.
  6. B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, Records, Wiley, New York, 1998.
  7. B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, A first Course in Statistics, Wiley, New York, 1992.
  8. M. C. Bryson, Heavy-tailed distributions: properties and tests, Technometrics 16 (1974), no. 1, 61–68.
  9. M. Chahkandi and M. Ganjali, On some lifetime distributions with decreasing failure rate, Comput. Statist. Data Anal. 53 (2009), no. 12, 4433–4440.
  10. B. Efron, The bootstrap and other resampling plans, In: CBMS-NSF Regional Conference Seriesin Applied Mathematics, SIAM, Philadelphia, PA, 1982.
  11. D. Gamerman, Markov chain Monte Carlo, Stochastic Simulation for Bayesian Inference, Chapman and Hall, London, 1997.
  12. A. E. Gelfand and A. F. M. Smith, Sampling based approach to calculating marginal densities, J. Amer. Statist. Asso. 85 (1990), 398–409.
  13. S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell. 6 (1984), 721–741.
  14. W. R. Gilks, S. Richardson and D. J. Spiegelhalter, Markov chain Monte Carlo in Practices, Chapman and Hall, London, 1996.
  15. M. Habibullah, and M. Ahsanullah, Estimation of parameters of a Pareto distribution by generalized order statstics, Comm. Statist. Theory Methods 29 (2000), 1597-1609.
  16. P. Hall, Theoretical comparison of bootstrap confidence intervals, Ann. Stat. 16 (1988), 927-953.
  17. W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1970), 97–109.
  18. K. S. Lomax, Business failure: Another example of the analysis of the failure data, JASA 49 (1954), 847-852.
  19. A. W. Marshall and I. Olkin, Life Distributions. Structure of Nonparametric, Semiparametric, and Parametric Families, Springer, New York, NY, 2007.
  20. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phy. 21 (1953), 1087–1091.
  21. H. N. Nagaraja, Record values and related statistics-a review, Comm. Statist. Theory Methods 17 (1988), 2223- 2238.
  22. W. B. Nelson, Applied Life Data Analysis, Wiley, New York, 1982.
  23. M. Z. Raqab, Inferences for generalized exponential distribution based on record Statistics, J. Statist. Plann. Inference 52 (2002), 339-350.
  24. M. Z. Raqab and M. Ahsanulla, Estimation of the location and scale parameters of the generalized exponential distribution based on order Statistics, J. Statis Comput Simul. 69 (2001), 109-124.
  25. S. I. Resnick, Extreme values, Regular variation, and point processes, Springer-Verlag,New York, 1987.
  26. S. Rezaei, R. Tahmasbi and M. Mahmoodi, Estimation of P[Y¡X] for generalized Pareto distribution, J. Statist. Plann. Inference 140 (2010), 480-494.
  27. C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Second edition, Springer, New York, 2004.
  28. A. A. Soliman, A. H. Abd Ellah, N. A. Abou-Elheggag, and A. A. Modhesh, Bayesian inference and prediction of Burr type XII distribution for progressive first-failure censored sampling, Intel. Info. Mana. 3 (2011), 175-185.
  29. S. K. Upadhyay and M. Peshwani, Choice between Weibull and lognormal models: a smulation based Bayesian
Index Terms

Computer Science
Information Sciences

Keywords

Lomax distribution Bayesian and non-Bayesian estimations Gibbs and Metropolis sampler Bootstrap methods. ifx