CFP last date
20 December 2024
Reseach Article

EEG Signal Classification using Linear Predictive Cepstral Coefficient Features

by S. Pazhanirajan, P. Dhanalakshmi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 73 - Number 1
Year of Publication: 2013
Authors: S. Pazhanirajan, P. Dhanalakshmi
10.5120/12707-9508

S. Pazhanirajan, P. Dhanalakshmi . EEG Signal Classification using Linear Predictive Cepstral Coefficient Features. International Journal of Computer Applications. 73, 1 ( July 2013), 28-31. DOI=10.5120/12707-9508

@article{ 10.5120/12707-9508,
author = { S. Pazhanirajan, P. Dhanalakshmi },
title = { EEG Signal Classification using Linear Predictive Cepstral Coefficient Features },
journal = { International Journal of Computer Applications },
issue_date = { July 2013 },
volume = { 73 },
number = { 1 },
month = { July },
year = { 2013 },
issn = { 0975-8887 },
pages = { 28-31 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume73/number1/12707-9508/ },
doi = { 10.5120/12707-9508 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:38:55.624797+05:30
%A S. Pazhanirajan
%A P. Dhanalakshmi
%T EEG Signal Classification using Linear Predictive Cepstral Coefficient Features
%J International Journal of Computer Applications
%@ 0975-8887
%V 73
%N 1
%P 28-31
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

An electroencephalogram (EEG) is a procedure that records brain wave patterns, which are used to identify abnormalities related to the electrical activities of the brain. In this study an effective algorithm is proposed to automatically classify EEG clips into two different classes: normal and abnormal. For categorizing the EEG data, feature extraction techniques such as linear predictive coefficients (LPC) and linear predictive cepstral coefficients (LPCC) are used. Support vector machines (SVM) is used to classify the EEG clip into their respective classes by learning from training data.

References
  1. Golnaz Baghdadi, Ali Motie Nasrabadi (2012). Comparison of different EEG Features in Estimation of Hypnosis Susceptibility Level. Elsevier(pp. 590-597).
  2. Shang-Ming Zhou, John Q. Gan, Francisco Sepulveda (2007). Classifying mental tasks based on features of higher-orderstatistics from EEG signals in brain–computer interface. Elsevier(pp. 1629-1640).
  3. Ricardo Aler, Inés M. Galván, José M. Valls (2012). Applying evolution strategies to preprocessing EEG signals for brain–computer interfaces. Elsevier(pp. 53-66).
  4. Elif Derya Ubeyli, Inan Culer (2009). Measuring saliency of features representing EEG signals using signal-to-noise ratios. Elsevier(pp. 501-509).
  5. Elif Derya Ubeyli, Inan Culer (2006). Features Extracted by Eigenvector Methods for Detecting Variability of EEG Signals. Elsevier(pp. 592-603).
  6. Y. Tang, D. M. Durand (2012). A Tunable Support Vector Machine Assembly Classifier for Epileptic Seizure Detection. Elsevier(pp. 3925-3938).
  7. Z. Khalili1, M. H. Moradi (2008). Emotion Detection Using Brain and Peripheral Signals. Biomedical engineering faculty. IEEE Transactions on Proceedings of the CIBEC.
  8. Ashish Panat, Anita Patil (2012). Analysis of Emotion Disorders based on EEG signals of Human Brain. International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 2, No. 4.
  9. Abdulhamit Subasi (2007). EEG Signal Classification Using Wavelet Feature Extraction and a Mixture of Expert Model. Elsevier(pp. 1084 -1093).
  10. Duda, R. O. , Hart, P. E. , & Strok, D. G. (2001). Pattern Classification. New York: John Wiley-Interscience.
  11. P. Dhanalakshmi, S. Palanivel, V. Ramalingam (2009). Classification of Audio Signals Using SVM and RBFNN. Elsevier(pp. 6069-6075).
  12. R. Courant, H. Hilbert-methods of Mathematical Physics-vol. 1- Interscience Publishers Inc. 1953.
Index Terms

Computer Science
Information Sciences

Keywords

EEG EEG classification EDF format Feature extraction Linear Prediction Cepstral Coefficients (LPCC) Support Vector Machines (SVM)