CFP last date
20 February 2025
Reseach Article

A Breast Cancer Diagnosis System using Hybrid Case-based Approach

by Dina A. Sharaf-el Deen, Ibrahim F. Moawad, M. E. Khalifa
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 72 - Number 23
Year of Publication: 2013
Authors: Dina A. Sharaf-el Deen, Ibrahim F. Moawad, M. E. Khalifa
10.5120/12681-9450

Dina A. Sharaf-el Deen, Ibrahim F. Moawad, M. E. Khalifa . A Breast Cancer Diagnosis System using Hybrid Case-based Approach. International Journal of Computer Applications. 72, 23 ( June 2013), 14-20. DOI=10.5120/12681-9450

@article{ 10.5120/12681-9450,
author = { Dina A. Sharaf-el Deen, Ibrahim F. Moawad, M. E. Khalifa },
title = { A Breast Cancer Diagnosis System using Hybrid Case-based Approach },
journal = { International Journal of Computer Applications },
issue_date = { June 2013 },
volume = { 72 },
number = { 23 },
month = { June },
year = { 2013 },
issn = { 0975-8887 },
pages = { 14-20 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume72/number23/12681-9450/ },
doi = { 10.5120/12681-9450 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:38:51.019766+05:30
%A Dina A. Sharaf-el Deen
%A Ibrahim F. Moawad
%A M. E. Khalifa
%T A Breast Cancer Diagnosis System using Hybrid Case-based Approach
%J International Journal of Computer Applications
%@ 0975-8887
%V 72
%N 23
%P 14-20
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Nowadays, mammography is recognized as the most effective technique for breast cancer diagnosis. Case-Based Reasoning (CBR) is one of the important techniques used to diagnose the breast cancer disease. The retrieval-only CBR systems do not provide an acceptable accuracy in critical domains such as medical. In this paper, a new breast cancer diagnosis system using hybrid case-based approach is presented to improve the accuracy of the retrieval-only CBR systems. The approach integrates case-based reasoning and rule-based reasoning, and applies the adaptation process automatically by exploiting adaptation rules. Both adaptation rules and reasoning rules are generated automatically from the case-base. After solving a new case, the case-base is expanded, and both adaptation and reasoning rules are updated automatically. To evaluate the proposed approach, a prototype was implemented and experimented to diagnose the breast cancerdisease. The final results showed that the proposed approach increases the diagnosing accuracy comparing with the retrieval-only CBR systems, and provides a reliable accuracy comparing to the current breast cancer diagnosis systems.

References
  1. Ahmed, M. U. , Begum, S. , & Funk, P. 2012. A Hybrid Case-Based System in Stress Diagnosis and Treatment. In IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI2012).
  2. Sahin, S. , Tolun, M. R. , &Hassanpour, R. 2012. Hybrid expert systems: A survey of current approaches and applications. Expert Systems with Applications, 39(4), 4609-4617.
  3. Bichindaritz, I. , &Montani, S. 2011. Guest Editorial: Advances in case-based reasoning in the health sciences. Artificial Intelligence in Medicine, 51(2), 75-79.
  4. Kolodner, J. 1993. Case based reasoning. Morgan Kauffman, San Mateo, California
  5. Aamodt, A. , & Plaza, E. 1994. Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI communications, 7(1), 39-59.
  6. Baumeister, J. , Atzmuller, M. , Puppe, F. 2002. Inductive learning for case-based diagnosis with multiple fault, in: Advanced in Case-Based Reasoning: 6thEuropean Conference, ECCBR, Springer, Berlin, pp. 28-42
  7. Hunt, J. , Miles, R. 1994. Hybrid case-based reasoning, The Knowledge Engineering Review,vol. 9(4), pp. 383-397.
  8. Lenz, M. , Bartsch-Spörl, B. , Burkhard, H. D. , &Wess, S. 1998. Case-based reasoning technology, from foundations to applications. Springer-Verlag.
  9. Macura, R. T. , &Macura, K. 1997. Case-based reasoning: opportunities and applications in health care. Artificial Intelligence in Medicine, 9(1), 1.
  10. Begum, S. , Ahmed, M. U. , Funk, P. , Xiong, N. , &Folke, M. 2011. Case-based reasoning systems in the health sciences: a survey of recent trends and developments. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 41(4), 421-434.
  11. Sharaf-Eldeen, D. A. , Moawad, I. F. , El Bahnasy, K. , &Khalifa, M. E. 2012. Learning and Applying Range Adaptation Rules in Case-Based Reasoning Systems. In Advanced Machine Learning Technologies and Applications (pp. 487-495). Springer Berlin Heidelberg.
  12. Blanco, X. , Rodríguez, S. , Corchado, J. M. , &Zato, C. 2013. Case-Based Reasoning Applied to Medical Diagnosis and Treatment. In Distributed Computing and Artificial Intelligence (pp. 137-146). Springer International Publishing.
  13. Li, H. , Li, X. , Hu, D. , Hao, T. , Wenyin, L. , & Chen, X. 2009. Adaptation rule learning for case?based reasoning. Concurrency and Computation: Practice and Experience, 21(5), 673-689.
  14. Yusof, M. M. , & Buckingham, C. D. (2009). Medical case-based reasoning: A review of retrieving, matching and adaptation processes in recent systems. InProceedings of the IASTED International Conference (Vol. 639, p. 053).
  15. Huang, M. J. , Chen, M. Y. , & Lee, S. C. 2007. Integrating data mining with case-based reasoning for chronic diseases prognosis and diagnosis. Expert Systems with Applications, 32(3), 856-867.
  16. Schmidt, R. , &Vorobieva, O. 2006. Case-based reasoning investigation of therapy inefficacy. Knowledge-Based Systems, 19(5), 333-340.
  17. Marling, C. , Shubrook, J. , & Schwartz, F. 2008. Case-based decision support for patients with type 1 diabetes on insulin pump therapy. In Advances in Case-Based Reasoning (pp. 325-339). Springer Berlin Heidelberg.
  18. Schmidt, R. , &Gierl, L. 2005. A prognostic model for temporal courses that combines temporal abstraction and case-based reasoning. International journal of medical informatics, 74(2), 307-315.
  19. Ochoa, A. , Meza, M. , González, S. , Padilla, A. , Damiè, M. , Torre, D. L. J. , & Jiménez-Vielma, F. 2008. An intelligent tutor based on case-based reasoning to medical use. Advances in Computer Science and Engineering. Research in Computing Science. , 34, 187-194.
  20. O'Sullivan, D. , Bertolotto, M. , Wilson, D. , &McLoghlin, E. 2006. Fusing mobile case-based decision support with intelligent patient knowledge management. In Workshop on CBR in the Health Sciences (pp. 151-160).
  21. Ayer, T. , Ayvaci, M. U. , Liu, Z. X. ,Alagoz, O. , & Burnside, E. S. 2010. Computer-aided diagnostic models in breast cancer screening. Imaging, 2(3), 313-323.
  22. Huang, M. L. , Hung, Y. H. , Lee, W. M. , Li, R. K. , & Wang, T. H. 2012. Usage of Case-Based Reasoning, Neural Network and Adaptive Neuro-Fuzzy Inference System Classification Techniques in Breast Cancer Dataset Classification Diagnosis. Journal of medical systems, 36(2), 407-414.
  23. Pawlak, Z. 1982. Rough sets. International Journal of Computer and Information Sciences, 11(5), 341 – 356.
  24. Yang, Y. P. O. , Shieh, H. M. , Tzeng, G. H. , Yen, L. , & Chan, C. C. 2008. Business aviation decision-making using rough sets. In Rough Sets and Current Trends in Computing (pp. 329-338). Springer Berlin Heidelberg.
  25. Shyng, J. Y. , Wang, F. K. , Tzeng, G. H. , & Wu, K. S. 2007. Rough set theory in analyzing the attributes of combination values for the insurance market. Expert Systems with Applications, 32(1), 56-64.
  26. Ziarko, W. P. , & Van Rijsbergen, C. J. 1994. Rough sets, fuzzy sets and knowledge discovery (Vol. 15). London: Springer-Verlag.
  27. "http://archive. ics. uci. edu/ml/datasets. html", last accessed: May 2013
  28. Salzberg, S. L. 1997. On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and knowledge discovery, 1(3), 317-328.
  29. Jiang, Y. , et al. 1996. Malignant and benign clustered microcalcifications: automated feature analysis and classification. Radiology,198(3), 671-678.
  30. Markopoulos, C. , Kouskos, E. , Koufopoulos, K. , Kyriakou, V. , &Gogas, J. 2001. Use of artificial neural networks (computer analysis) in the diagnosis of microcalcifications on mammography. European journal of radiology, 39(1), 60-65.
  31. Huo, Z. , Giger, M. L. ,Vyborny, C. J. , & Metz, C. E. 2002. Breast Cancer: Effectiveness of Computer-aided Diagnosis—Observer Study with Independent Database of Mammograms1. Radiology, 224(2), 560-568.
  32. Floyd, C. E. , Lo, J. Y. , &Tourassi, G. D. 2000. Case-based reasoning computer algorithm that uses mammographic findings for breast biopsy decisions. American Journal of Roentgenology, 175(5), 1347-1352.
  33. Elter, M. , Schulz-Wendtland, R. , & Wittenberg, T. 2007. The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process. Medical Physics, 34, 4164.
  34. Chan, H. P. , et al. 1999. Improvement of Radiologists' Characterization of Mammographic Masses by Using Computer-aided Diagnosis: An ROC Study1. Radiology, 212(3), 817-827.
  35. Gupta, S. , Chyn, P. F. , & Markey, M. K. 2006. Breast cancer CAD based on BI-RADS™ descriptors from two mammographic views. Medical physics, 33, 1810.
  36. Wang, X. H. , Zheng, B. , Good, W. F. , King, J. L. , & Chang, Y. H. 1999. Computer-assisted diagnosis of breast cancer using a data-driven Bayesian belief network. International Journal of Medical Informatics, 54(2), 115-126.
  37. Chhatwal, J. , Alagoz, O. , Lindstrom, M. J. , Kahn, C. E. , Shaffer, K. A. , & Burnside, E. S. 2009. A logistic regression model based on the national mammography database format to aid breast cancer diagnosis. American Journal of Roentgenology, 192(4), 1117-1127.
  38. Burnside, E. S. , et al. 2009. Probabilistic Computer Model Developed from Clinical Data in National Mammography Database Format to Classify Mammographic Findings1. Radiology, 251(3), 663-672.
  39. Ayer, T. , Alagoz, O. , Chhatwal, J. , Shavlik, J. W. , Kahn, C. E. , & Burnside, E. S. 2010. An artificial neural network to quantify malignancy risk based on mammography findings: discrimination and calibration. Cancer.
  40. Bilska-Wolak, A. O. , Floyd Jr, C. E. , Lo, J. Y. , & Baker, J. A. 2005. Computer aid for decision to biopsy breast masses on mammography: validation on new cases. Academic radiology, 12(6), 671.
  41. Park, S. H. , Goo, J. M. , & Jo, C. H. 2004. Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean Journal of Radiology, 5(1), 11-18.
Index Terms

Computer Science
Information Sciences

Keywords

Case-based reasoning (CBR) Rule-based reasoning (RBR) Adaptation rules Breast cancer diagnosis Mammography