We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Pressure and Free Flight Time Effects on Glow Discharge Characteristics

by F. Bouanaka, S. Rebiai
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 72 - Number 1
Year of Publication: 2013
Authors: F. Bouanaka, S. Rebiai
10.5120/12461-8817

F. Bouanaka, S. Rebiai . Pressure and Free Flight Time Effects on Glow Discharge Characteristics. International Journal of Computer Applications. 72, 1 ( June 2013), 38-44. DOI=10.5120/12461-8817

@article{ 10.5120/12461-8817,
author = { F. Bouanaka, S. Rebiai },
title = { Pressure and Free Flight Time Effects on Glow Discharge Characteristics },
journal = { International Journal of Computer Applications },
issue_date = { June 2013 },
volume = { 72 },
number = { 1 },
month = { June },
year = { 2013 },
issn = { 0975-8887 },
pages = { 38-44 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume72/number1/12461-8817/ },
doi = { 10.5120/12461-8817 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:36:48.259182+05:30
%A F. Bouanaka
%A S. Rebiai
%T Pressure and Free Flight Time Effects on Glow Discharge Characteristics
%J International Journal of Computer Applications
%@ 0975-8887
%V 72
%N 1
%P 38-44
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this work, a model for a DC glow discharge at low pressure, used in many applications has been developed. This model allows the determination of plasma characteristics distributions in 2D geometry. The proposed theoretical model is applied to collisional argon plasma at low pressure in a reactor consisting of two plane parallel electrodes where the cathode is heated to a voltage of -250 V. The proposed code is based on solving the continuity equation coupled with Poisson's equation and electrons mean energy's equation. The particles trajectories simulation requires the knowledge of all collisional processes through their collision cross sections. The probability of collision during a free flight time can not be known without performing integrations of non-analytical cross sections. The proposed solution to this problem consists in the application of the "null collision" concept. The simulation results are shown in terms of spatial distribution of charged particles, potential, electric field, electrons energy and velocity. The study of the pressure (0. 1-1Torr) and the free flight time (5. 11x10-9 to 1. 46 x10- 7s) effect, on the plasma characteristics, confirms the validity of this model

References
  1. M. Moradshanhi, T. Tavakoli, S. Amiri et al, Surface and Coatings Technology, 201(3), 567 (2006).
  2. M. A. Lieberman, A. J. Lichtenberg, principles of plasma discharges and materials processing, (John Wiley, New York), 1994.
  3. D. Hash, D. Bose, and T. R. Govindan et al, Journal of applied physic, Vol. 93, NO 10, pp (6284-6290), 2003.
  4. T. E. Nitschke and D. B. Graves; Journal of applied physic, Vol. 76, No 10, pp (5646-5660), 15 November 1994.
  5. A. Bogaerts, R. Gijbels, Science Direct, Vol. 69, pp (37–52), 2003
  6. H. C . Kim1, F . Iza, and S . S Yang, et al, J. Phys. D: Appl. Phys. Vol 38, pp (283–301), (2005).
  7. P. Bartos, R. Hrach, P. J. nek, Science Direct, Vacuum 82 (2008) 220–223
  8. E. Gogolides, H. Sawin, Journal of applied physic, Vol. 72,NO 9, 1992, pp (3971-3987).
  9. S. Iordanova and I. Koleva, Spectrochimica Acta part B, 62 (2007), 344-356.
  10. R. Kawakami and T. Inaoka, ELSEVIER, Vacuum, 83(2009), 490–492.
  11. D. Tashima, A. Sakamoto, and M. Taniguchi, et al, ELSEVIER, Vacuum, 83 (2009) 695–698
  12. I. Rafatov, E. A. Bogdanov and A. A. Kudryavtsev, Phys. Plasmas 19, V. 033502 (2012)
  13. I. Rafatov, E. A. Bogdanov and A. A. Kudryavtsev, Phys. Plasmas 19, V. 093503 (2012)
  14. R. R. Arslanbekov and V. I. Kolobov, J. Phys. D: Appl. Phys. , v. 36, p. 2986, 2003.
  15. E. A. Bogdanov, S. F. Adams, V. I. Demidov, A. A. Kudryavtsev and J. M. Williamson, Phys. Plasmas, v. 17, N10, 103502(1-11), 2010.
  16. A. Bogaerts, R. Gijbels, Spectrochimica Acta Part B. 57, (2002) 1071.
  17. S. Roy and B. P. Pandey, Physics of plasmas, 10(2003), 2578.
  18. I. Denysenko, K. Ostrikov, and P. P. Rutkevych et al , Computational Materials Science, 30 (2004), 303
  19. N. Balcon, G. J. M Hagelaar and J. P. Boeuf, IEEE, Trans, Plasma Sci. 36 2782-7(2008)
  20. H. R. Skullerud, J. Appl. Phys, D2, 1567-1563 (1968).
  21. Vladimir, V. Serikov, and S. Kawamoto, et al, IEEE transactions on plasma science, vol. 27, no. 5, October 1999
  22. J. P. Nougier, Méthode de calcul numérique, Hermes Science 2001.
  23. A. Salabas, G. Gousset, L. L. Alves, Science Direct, Vacuum, 69 (2003), pp 213-219.
  24. J. P. Bœuf and L. C. Pitchford, Physical Review E, Volume 51, Number2, February 1995.
  25. Gerhard Franz, Low Pressure Plasmas and Microstructuring Technology, Springer-Verlag Berlin Heidelberg 2009
Index Terms

Computer Science
Information Sciences

Keywords

DC glow discharge Argon plasma modeling charged particles plasma potential electron energy