CFP last date
20 December 2024
Reseach Article

Numerical Study of Liquid Metal MHD Flow through a Square Duct under the Action of Strong Transverse Magnetic Field

by Dipjyoti Sarma, G. C. Hazarika, P. N. Deka
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 71 - Number 8
Year of Publication: 2013
Authors: Dipjyoti Sarma, G. C. Hazarika, P. N. Deka
10.5120/12380-8729

Dipjyoti Sarma, G. C. Hazarika, P. N. Deka . Numerical Study of Liquid Metal MHD Flow through a Square Duct under the Action of Strong Transverse Magnetic Field. International Journal of Computer Applications. 71, 8 ( June 2013), 29-32. DOI=10.5120/12380-8729

@article{ 10.5120/12380-8729,
author = { Dipjyoti Sarma, G. C. Hazarika, P. N. Deka },
title = { Numerical Study of Liquid Metal MHD Flow through a Square Duct under the Action of Strong Transverse Magnetic Field },
journal = { International Journal of Computer Applications },
issue_date = { June 2013 },
volume = { 71 },
number = { 8 },
month = { June },
year = { 2013 },
issn = { 0975-8887 },
pages = { 29-32 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume71/number8/12380-8729/ },
doi = { 10.5120/12380-8729 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:35:02.403863+05:30
%A Dipjyoti Sarma
%A G. C. Hazarika
%A P. N. Deka
%T Numerical Study of Liquid Metal MHD Flow through a Square Duct under the Action of Strong Transverse Magnetic Field
%J International Journal of Computer Applications
%@ 0975-8887
%V 71
%N 8
%P 29-32
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Numerical solution for steady MHD flow of liquid metal through a square duct under the action of strong transverse magnetic field has been investigated. The walls of the duct are considered to be electrically insulated as well as isothermal. The numerical solutions for velocity and temperature distributions have been obtained by finite difference method. The solutions for different values of Hartmann number and Prandtl number has been analyzed and are presented graphically. The MHD effect on velocity field and temperature field has been predicted in this investigation.

References
  1. Hartmann,J. and Lazarus,F. 1937. Experimental investigations on the flow of mercury in a homogeneous msagnetic field. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. vol 15(6). 1-45.
  2. Shercliff,J. A. 1953. Steady motion of conducting fluids in pipes under transverse magnetic field. Mathematical Proc. of the Cambridge Philosophical Society. vol 49(1). 136-144.
  3. Shercliff, J. A. 1962. Magnetohydrodynamic pipe flow Part 2, High Hartmann number. Journal of Fluid Mechanics. vol 13(4). 513-518.
  4. Gupta, S. C. and Singh, B. 1970. Unsteady Magnetohydrodynamic Flow in a circular pipe under a Transverse Magnetic Field. Physics of Fluids. vol 13(2). 346-352.
  5. Singh,B. and Lal,J. 1978. Magnetohydrodynamic axial flow in a triangular pipe under transverse magnetic field. Indian Journal of Pure & Applied Mathematics. vol 9(2). 101-115.
  6. Walker, S. 1986. Liquid metal flow in a thin conducting pipe near the end of a region of uniform magnetic field. Journal of Fluid Mechanics. vol 167. 199-217.
  7. Kim, C. N. and Abdou, M. A. 1989. Numerical Method for Fluid Flow and Heat Transfer in Magnetohydrodynamic Flow. Fusion Technology. vol 15. 1163-1168.
  8. Kunugi, T. , Tillack, M. S. and Abdou, M. A. 1991. Analysis of Liquid Metal MHD Fluid Flow and Heat Transfer using the KAT Code. Fusion Technology. vol 19. 1000-1005.
  9. Buhler,L. 1991. Liquid metal flow in arbitrary thin-walled channels under a strong transverse variable magnetic field. Fusion Engineering and Design. vol 17. 215-220.
  10. Smolentsev,S. Yu. 1999. Mathematical models for magnetohydrodynamic flows in a fusion reactor blanket. Plasma Devices and Operations. vol 7. 231-241.
  11. Barrett, K. E. 2001. Duct flow with a transverse magnetic field at high Hartmann numbers. International Journal for numerical methods in engineering. vol 50(8). 1893-1906.
  12. Celik,I. 2011. Solutions of magnetohydrodynamic flow in a rectangular duct by Chebyshev Collocation method. International Journal for Numerical methods in fluids. vol 66(10). 1325-1340.
  13. Kesan,C. 2003. Chebyshev polynomial solutions of second order linear partial differential equations. Applied Mathematics and Computations. vol 134(1). 109-124.
  14. Al-Khawaja,M. 2010 Matlab-Modelling, programming and simulations. Sciyo.
  15. Jain, M. K. , Iyengar, S. R. K. and Jain, R. K. 1994. Computational Methods for Partial Differential Equations. Wiley Eastern Limited.
  16. Tillack, M. S. 1989. Liquid Metal Magneto hydrtodynamics. Kluwer Academic Publishers.
  17. Moreau, R. 1990. Magnetohydrodynamics. Kluwer Academic Publishers.
  18. McCarthy, K. A. and Abdou, M. A. 1991. Analysis of liquid metal MHD flow in multiple adjacent ducts using an iterative method to solve the core flow equations. Fusion Engineering and Design. vol 13. 363-380.
  19. Kim,C. N. Hadid Ali H. and Abdou, M. A. 1989. Development of a computational method for the full solution of MHD flow in Fusion Blankets. Fusion Engineering and Design. Vol 8. 265-270.
  20. Thirumaleshwar, M. 2006. Fundamental of Heat and Mass Transfer. Dorling Kindersley Pvt. Ltd.
Index Terms

Computer Science
Information Sciences

Keywords

MHD flow liquid metal flow electrically insulated wall square duct