CFP last date
20 January 2025
Reseach Article

Constrained Control of C^2 Rational Interpolant with Multiple Shape Parameter

by Mridula Dube, Meenal Priya Singh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 71 - Number 7
Year of Publication: 2013
Authors: Mridula Dube, Meenal Priya Singh
10.5120/12368-8706

Mridula Dube, Meenal Priya Singh . Constrained Control of C^2 Rational Interpolant with Multiple Shape Parameter. International Journal of Computer Applications. 71, 7 ( June 2013), 7-10. DOI=10.5120/12368-8706

@article{ 10.5120/12368-8706,
author = { Mridula Dube, Meenal Priya Singh },
title = { Constrained Control of C^2 Rational Interpolant with Multiple Shape Parameter },
journal = { International Journal of Computer Applications },
issue_date = { June 2013 },
volume = { 71 },
number = { 7 },
month = { June },
year = { 2013 },
issn = { 0975-8887 },
pages = { 7-10 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume71/number7/12368-8706/ },
doi = { 10.5120/12368-8706 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:34:52.578598+05:30
%A Mridula Dube
%A Meenal Priya Singh
%T Constrained Control of C^2 Rational Interpolant with Multiple Shape Parameter
%J International Journal of Computer Applications
%@ 0975-8887
%V 71
%N 7
%P 7-10
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A C2 cubic rational spline with cubic numerator and linear denominator has been constructed . This rational spline belongs to C2 in the interpolating interval. By selecting the suitable value of shape parameters,it is easy to find the constrains for the shape of interpolating curve to lie above,below or between the given straight lines. Also the error bound for interpolating function is discussed.

References
  1. Duan Qi , Wang Liqiu,Twizell E. H. ,a new C2 rational interpolation based on function values and constrained control of the interpolantcurves. Applied Mathematics and Computation161(2005)311 ?? 322
  2. Dube M,Sharma R,quadratic NUAT B-spline curves with multiple shape parameters,international journal of machine intelligence2011; 3; 18 ?? 24:
  3. Dube M. , Sanyal S. ,shape preserving G2-rational cubic trigonometric spline ,journal of the Indian Math. Soc. 2011; 1??4
  4. Dube M. , Tiwari Preeti ,convexity preserving C2 rational quadratic trigonometric spline accepted in proceedings of ICNAAM conference; 2012; 1479; 995 ?? 998
  5. Fritsch F. N. ,Butland J. ,A method for constructing local monotone piecewise cubic interpolation,SIAM J. Sci. Stat. Comput 5,1984,303-304.
  6. Fritsch F. N. ,Carlson R. E. ,Monotone piecewise cubic interpolation,SIAM J. Numer. Anal. 17,1980,238-246.
  7. Gregory J. A. ,Shape preserving spline interpolation , Comput. Aided Des. 18; 1986; 53 ?? 57
  8. Gregory J. A. ,Delbourgo R. ,Piecewise rational quadrating interpolation to monotonic data,IMCJ Numer. Anal. 2; 1982; 123 ?? 130
  9. Sarfaraz M. . Rarional cubic spline interpolation with shape control. Computers Graphics . 29,2005,594-605.
  10. Schultz M. H. ,Spline Analysis,Prentice-Hall,Englewood Cliffs,New Jersey,1973.
  11. Schumaker L. L. ,On shape preserving quadrating spline interpolation,SIAM J. Numer. Anal20; 1883;
Index Terms

Computer Science
Information Sciences

Keywords

Rational cubic spline shape parameters constrained interpolation Error estimation