CFP last date
20 January 2025
Reseach Article

On Security of Hill Cipher using Finite Fields

by P. L. Sharma, M. Rehan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 71 - Number 4
Year of Publication: 2013
Authors: P. L. Sharma, M. Rehan
10.5120/12348-8637

P. L. Sharma, M. Rehan . On Security of Hill Cipher using Finite Fields. International Journal of Computer Applications. 71, 4 ( June 2013), 30-33. DOI=10.5120/12348-8637

@article{ 10.5120/12348-8637,
author = { P. L. Sharma, M. Rehan },
title = { On Security of Hill Cipher using Finite Fields },
journal = { International Journal of Computer Applications },
issue_date = { June 2013 },
volume = { 71 },
number = { 4 },
month = { June },
year = { 2013 },
issn = { 0975-8887 },
pages = { 30-33 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume71/number4/12348-8637/ },
doi = { 10.5120/12348-8637 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:34:38.760164+05:30
%A P. L. Sharma
%A M. Rehan
%T On Security of Hill Cipher using Finite Fields
%J International Journal of Computer Applications
%@ 0975-8887
%V 71
%N 4
%P 30-33
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Hill cipher in cryptography is a symmetric key substitution algorithm, which is vulnerable to known plaintext attack. The present paper provides two fold securities to the existing Hill cipher by using the elements of finite fields and logical operator.

References
  1. Stallings, W. 2006. Cryptography and Network Security. Fourth Edition. Pearson.
  2. Schneier, B. 2007. Applied Cryptography: Protocols, Algorithms, and Source Code in C. Second Edition. John Wiley& Sons.
  3. Lidl, R. , and Niederreiter, H. 1997. Finite Fields. Cambridge University Press. Cambridge. Second Edition.
  4. Lakshami, G. N. , Kumar, B. R. , Suneetha, Ch. , and Chandra Shekhar, A. 2011. A Cryptographic Scheme of Finite Fields Using Logical Operators. International Journal of Computer Applications. 31(4), p. 1- 4.
  5. Hill, L. S. 1929. Cryptography in an Algebraic Alphabet. American Mathematical Monthly. 36, p. 306-312.
  6. Hill, L. S. 1931. Concerning Certain Linear Transformation Apparatus of Cryptography. American Mathematical Monthly. 38, p. 135-154.
  7. Buchmann, J. A. 2004. Introduction to Cryptography. Second Edition. Springer-Verlag. New York.
  8. Stinson, D. R. 2006. Cryptography Theory and Practice. Third Edition. Chapman & Hall/CRC.
  9. Overbey, J. , Traves, W. , and Wojdylo, J. 2005. On The Key Space of The Hill Cipher. Cryptologia. 29(1), p. 59-72.
  10. Koblitz, N. 1994. A Course in Number Theory and Cryptography. Springer Verlag. New York.
  11. Saeednia's, S. 2000. How to Make The Hill Cipher Secure. Cryptologia. 24, p. 353-360.
  12. Chefranov, A. G. 2007. Secure Hill Cipher Modification SHC-M. Proceedings of the First Internationl Conference on Security of Information and Networks. Trafford Publishing. Canada, p. 34-37.
  13. Ismail, I. A. , Amin, M. , and Diab, H. 2006. How to Repair Hill Cipher. Journal of Zhejiang University-Science A. 7(12), p. 2022-2030.
  14. Adi, N. R. K. , Vishnuvardhan, B. , Madhuviswanath, V. , and Krishna, A. V. N. 2012. A Modified Hill Cipher Based on Circulant Matrices. Procedia Technology (Elsevier). 4, p. 114-118.
Index Terms

Computer Science
Information Sciences

Keywords

Plain Text Symmetric Key Hill Cipher Finite Field Logical Operator