We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Embedding an Arbitrary 1-safe Petri Net into a Boolean Petri Net

by Gajendra Pratap Singh, Sangita Kansal, Mukti Acharya
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 70 - Number 6
Year of Publication: 2013
Authors: Gajendra Pratap Singh, Sangita Kansal, Mukti Acharya
10.5120/11964-7824

Gajendra Pratap Singh, Sangita Kansal, Mukti Acharya . Embedding an Arbitrary 1-safe Petri Net into a Boolean Petri Net. International Journal of Computer Applications. 70, 6 ( May 2013), 7-9. DOI=10.5120/11964-7824

@article{ 10.5120/11964-7824,
author = { Gajendra Pratap Singh, Sangita Kansal, Mukti Acharya },
title = { Embedding an Arbitrary 1-safe Petri Net into a Boolean Petri Net },
journal = { International Journal of Computer Applications },
issue_date = { May 2013 },
volume = { 70 },
number = { 6 },
month = { May },
year = { 2013 },
issn = { 0975-8887 },
pages = { 7-9 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume70/number6/11964-7824/ },
doi = { 10.5120/11964-7824 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:32:08.309445+05:30
%A Gajendra Pratap Singh
%A Sangita Kansal
%A Mukti Acharya
%T Embedding an Arbitrary 1-safe Petri Net into a Boolean Petri Net
%J International Journal of Computer Applications
%@ 0975-8887
%V 70
%N 6
%P 7-9
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Petri nets are powerful mathematical formalism for designing and studying behaviors of a wide range of discrete dynamical event driven systems. The aim of this paper is to show that an arbitrary 1- safe Petri net can be embedded as an induced subnet of a Boolean Petri net, viz. , the one that generates every binary n-vector as its marking vector.

References
  1. Petri, C. A. , Kommunikation mit automaten, Schriften des Institutes fur Instrumentelle Mathematik, Bonn, 1962.
  2. Callou, G. , Macial, P. , Tutsch, D. , Araujo, J. , Ferreira, J. and Souza, R. , A Petri net-based approach to the quantification of data center dependability. In: Petri nets—Manufacturing and Computer Science (Ed. : Pawel Pawlewski), 2012, 313-336.
  3. Dassow, J. , Mavlankulov, G. , Othman, M. , Turaev, S. , Selamat, M. H. and Stiebe, R. , Grammers controlled by Petri nets. In: Petri nets — Manufacturing and Computer Science (Ed. : Pawel Pawlewski), 2012, 337-358.
  4. Lee, G. B. , Zandong, H. and Lee, J. S. , Reachability criterion with sufficient test space for ordinary Petri net. In: Petri nets—Manufacturing and Computer Science (Ed. : Pawel Pawlewski), 2012, 423-438.
  5. Lee, G. B. , Zandong, H. and Lee, J. S. , Generalized state equation of Petri nets with priority, International Journal of Intelligent Systems, 18(11), 2003, 1145-1153.
  6. Murata, T. , Petri nets: Properties, analysis and applications, Proc. IEEE, 77(4), 1989, 541-580.
  7. Peterson, J. L. , Petri net Theory and the Modeling of Systems, Englewood Cliffs, NJ: Prentice-Hall, Inc. , 1981.
  8. Kansal, S. , Singh, G. P. , Acharya, M. , On Petri nets generating all the binary n-vectors, Scientiae Mathematicae Japonicae, 71(2)2010, 209-216.
  9. Harary, F. , Graph Theory, Addison-Wesley, Massachusettes, Reading, 1969.
  10. Jensen, K. , Coloured Petri nets, Lecture notes in computer Science, 254, Springer-Verlag, Berlin, 1986, 248-299.
  11. Reisig, W. , Petri nets, Springer-Verleg, New York, 1985.
  12. Kansal, S. , Singh, G. P. and Acharya, M. , A disconnected 1-safe Petri net whose reachability tree is homomorphic to a complete boolean lattice, Proceeding of International Conference on Process Automation Control and Computing, IEEE Xplore, 2011, 1-5, ISBN : 978-1-61284-762-7.
  13. Acharya, B. D. , Set-indexers of a graph and set-graceful graphs, Bull. Allahabad Math. Soc. , 16, 2001, 1-23.
  14. Kansal, S. , Singh, G. P. , Acharya, M. , 1??Safe Petri nets generating every binary n??vector exactly once, Scientiae Mathematicae Japonicae, 74(1), 2011, 29-36.
  15. Kansal, S. , Acharya, M. and Singh, G. P. , Uniqueness of minimal 1??safe Petri net generating every binary n??vectors as its marking vectors exactly once, Scientiae Mathematicae Japonicae, 74(2 & 3), 2011, 117-120.
Index Terms

Computer Science
Information Sciences

Keywords

1-safe Boolean Petri net reachability tree binary n-vector marking vector.