CFP last date
20 January 2025
Reseach Article

An Efficient Web Recommendation System using Collaborative Filtering and Pattern Discovery Algorithms

by R. Suguna, D. Sharmila
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 70 - Number 3
Year of Publication: 2013
Authors: R. Suguna, D. Sharmila
10.5120/11945-7755

R. Suguna, D. Sharmila . An Efficient Web Recommendation System using Collaborative Filtering and Pattern Discovery Algorithms. International Journal of Computer Applications. 70, 3 ( May 2013), 37-44. DOI=10.5120/11945-7755

@article{ 10.5120/11945-7755,
author = { R. Suguna, D. Sharmila },
title = { An Efficient Web Recommendation System using Collaborative Filtering and Pattern Discovery Algorithms },
journal = { International Journal of Computer Applications },
issue_date = { May 2013 },
volume = { 70 },
number = { 3 },
month = { May },
year = { 2013 },
issn = { 0975-8887 },
pages = { 37-44 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume70/number3/11945-7755/ },
doi = { 10.5120/11945-7755 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:31:55.430339+05:30
%A R. Suguna
%A D. Sharmila
%T An Efficient Web Recommendation System using Collaborative Filtering and Pattern Discovery Algorithms
%J International Journal of Computer Applications
%@ 0975-8887
%V 70
%N 3
%P 37-44
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Information is overloaded in the Internet due to the unstable growth of information and it makes information search as complicate process. Web recommendation systems assist the users to get the exact information and facilitate the information search easier. Web recommendation is one of the techniques of web personalization, which recommends web pages to the user based on the previous browsing history. It is done either content based approach or collaborative filtering approach. In this paper web usage mining is considered as the major source for web recommendation in association with Collaborative filtering approach, association rule mining and Markov model to recommend the web pages to the user.

References
  1. Mobasher, B. , Cooley, R. , and Srivastava, J. 2000a. Automatic personalization based on web usage mining. Communications of the ACM, 43(8), 142–151.
  2. Dimitrios Pierrakos, Ge Orgios Paliouras, Christos Papatheodorou and Constantine D. , Spyropoulos. 2003. Web Usage Mining as a Tool for Personalization: A Survey. User Modeling and User-Adapted Interaction 13: 311-372, Kluwer Academic Publishers. Printed in the Netherlands.
  3. Shiva Nadi, Mohammad Hossein Saraee, Ayoub Bagheri. 2011. A Hybrid Recommender System for Dynamic Web Users, International Journal Multimedia and Image Processing (IJMIP), 1(1).
  4. Riecken, D. 2000. Personalized Views of Personalization. Communications of the ACM 43, (8) 27–28.
  5. Claypool, M. , Gokhale, A. , Miranda, T. , Murnikov, P. , Netes, D. , and Sartin, M. 1999. Combining content-based and collaborative filters in an online newspaper. ACM SIGIR '99 Workshop on Recommender Systems, Berkely.
  6. Sarwar, B. , Karypis, G. , Konstan, J. , and Riedl, J. 2000. Analysis of recommendation algorithms for e-commerce. Proceedings of ACM Ecommerce Conference. 158–167.
  7. Yoon Ho Cho, Jae Kyeong Kim, Soung Hie Kim. 2002. A personalized recommender system based on web usage mining and decision tree induction. Expert Systems with Applications 23, 329–342.
  8. Dimitrios Pierrakos, Ge Orgios Paliouras, Christos Papatheodorou and Constantine D. Spyropoulos. 2003. Web Usage Mining as a Tool for Personalization: A Survey. User Modeling and User-Adapted Interaction. 13: 311-372. Kluwer Academic Publishers. Printed in the Netherlands.
  9. Cooley, R. , Mobasher, B. , and Srivastava, J. 1999. Data preparation for mining world wide web browsing patterns. Journal of Knowledge and Information Systems.
  10. Mobasher, B. , Dai, H. , Luo, T. , Sun, Y. , and Zhu, J. 2000b. Integrating web usage and content mining for more effective personalization. Proceedings of the EC-Web 2000, 165–176.
  11. Srivastava, J. , Cooley, R. , Deshpande, M. , and Tan, P. 2000. Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explorations, 1(2), 1–12.
  12. Bamshad Mobasher, Honghua Dai, Tao Luo, Miki Nakagawa. 2002. Improving the Effectiveness of Collaborative Filtering on Anonymous Web Usage Data.
  13. Eirinaki, M. , Vazirgiannis, M. , and Varlamis, I. 2003. SEWeP: Using Site Semantics and a Taxonomy to Enhance the Web Personalization Process. SIGKDD '03, August 24-27. Washington, DC, USA. Copyright 2003 ACM 1-58113-737-0/03/0008.
  14. Olfa Nasraoui and Chris Petenes. 2003. An Intelligent Web Recommendation Engine Based on Fuzzy Approximate Reasoning. Proceedings of the IEEE International Conference on Fuzzy Systems - Special Track on Fuzzy Logic and the Internet.
  15. Magdalini Eirinaki, Charalampos Lampos, Stratos Paulakis, Michalis Vazirgiannis. 2004. Web Personalization Integrating Content Semantics and Navigational Patterns. WIDM'04, November 12-13. Washington, DC, USA. Copyright 2004 ACM 1-58113-978-0/04/0011
  16. Feng Hsu Wanga, Hsiu-Mei Shao. 2004. Effective personalized recommendation based on time-framed navigation clustering and association mining. Expert Systems with Applications. 27, 365–377.
  17. Baoyao Zhou, Siu Cheung Hui and Kuiyu Chang. 2004. An Intelligent Recommender System using Sequential Web Access Patterns. Cybernetics and Intelligent Systems. IEEE Conference on Cybernetics and Intelligent Systems.
  18. Baoyao Zhou, Siu Cheung Hui, Kuiyu Chang. 2005. A Formal Concept Analysis Approach for Web Usage Mining. Intelligent Information Processing II IFIP International Federation for Information Processing. 163, 437-441.
  19. Guandong Xu, Yanchun Zhang, and Xun Yi. 2008. Modelling User Behaviour for Web Recommendation Using LDA Model. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.
  20. Jia L , Osmar R. , Zaïane. 2004. Combining Usage, Content, and Structure Data to Improve Web Site Recommendation. 5th International Conference on Electronic Commerce and Web Technologies (EC-Web).
  21. Mohamed Koutheaïr Khribi, Mohamed Jemni1 and Olfa Nasraoui. 2009. Automatic Recommendations for E-Learning Personalization Based on Web Usage Mining Techniques and Information Retrieval. Educational Technology and Society, 12 (4), 30–42.
  22. Rana Forsati, Mohammad Reza Meybodi, Afsaneh Rahbar. 2009. An Efficient Algorithm for Web Recommendation Systems. 978-1-4244-3806-8/09.
  23. Sumathi, C. , P. , Padmaja Valli, R. , and Santhanam, T. Automatic Recommendation of Web Pages in Web Usage Mining. (IJCSE) International Journal on Computer Science and Engineering 02(09),3046-3052.
  24. Harita Mehta, Shveta Kundra Bhatia, Punam Bedi and Dixit, V. , S. 2011. Collaborative Personalized Web Recommender System using Entropy based Similarity Measure. IJCSI International Journal of Computer Science. 8(6),3, 1694-0814.
  25. Venkata Ramana, T. , and Venugopala Rao, K. 2010. User Search Personalization in Semantic Web Mining, International Journal of Advanced Research in Computer Engineering and Technology. 1(3).
  26. Suneetha, K. , and Usha Rani, M. 2012. Web Page Recommendation Approach Using Weighted Sequential Patterns and Markov Model. Global Journal of Computer Science and Technology. 12(9).
  27. Haibo Liu, Hongjie Xing, Fang Zhang. 2012. Web Personalized Recommendation Algorithm Incorporated with User Interest Change. Journal of Computational Information Systems 8(4), 1383-1390.
  28. Qinjiao Mao, Boqin Feng, Shanliang Pan,. 2013. Modeling User Interests Using Topic Model. Journal of Theoretical and Applied Information Technology. 48(1).
  29. Florent Garcin, Christos Dimitrakakis, Boi Faltings. 2013. Personalized News Recommendation with Context Trees. ACM Journal.
  30. Suguna, R. , Sharmila, D. 2012. User Interest Based Web Usage Mining using a Modified Bird Flocking Algorithm, European Journal of Scientific Research (EJSR), Vol 86(2), pp. 218-231.
Index Terms

Computer Science
Information Sciences

Keywords

Web Recommendation Apriori Algorithm Markov model Collaborative filtering Web Usage Mining