We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

A Neuro-fuzzy Computing Technique for Modeling the Acoustic Form Function of Immersed Tubes

by Y. Nahraoui, El H. Aassif, A. Elhanaoui, G. Maze
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 70 - Number 28
Year of Publication: 2013
Authors: Y. Nahraoui, El H. Aassif, A. Elhanaoui, G. Maze
10.5120/12259-8489

Y. Nahraoui, El H. Aassif, A. Elhanaoui, G. Maze . A Neuro-fuzzy Computing Technique for Modeling the Acoustic Form Function of Immersed Tubes. International Journal of Computer Applications. 70, 28 ( May 2013), 42-50. DOI=10.5120/12259-8489

@article{ 10.5120/12259-8489,
author = { Y. Nahraoui, El H. Aassif, A. Elhanaoui, G. Maze },
title = { A Neuro-fuzzy Computing Technique for Modeling the Acoustic Form Function of Immersed Tubes },
journal = { International Journal of Computer Applications },
issue_date = { May 2013 },
volume = { 70 },
number = { 28 },
month = { May },
year = { 2013 },
issn = { 0975-8887 },
pages = { 42-50 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume70/number28/12259-8489/ },
doi = { 10.5120/12259-8489 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:34:07.967797+05:30
%A Y. Nahraoui
%A El H. Aassif
%A A. Elhanaoui
%A G. Maze
%T A Neuro-fuzzy Computing Technique for Modeling the Acoustic Form Function of Immersed Tubes
%J International Journal of Computer Applications
%@ 0975-8887
%V 70
%N 28
%P 42-50
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

An Adaptative Neuro-Fuzzy Inference System (ANFIS) is developed to predict the acoustic form function (FF) for an infinite length cylindrical shell excited perpendicularly to its axis. The Wigner-Ville distribution (WVD) is used like a comparison tool between the calculated FF by the analytical method and that predicted by the neuro-fuzzy technique for a copper tube. During the application of this technique, several configurations are evaluated for various radius ratio b/a (a: outer radius, b: inner radius of tube). This neuro-fuzzy technique is able to predict the FF with a mean relative error (MRE) about 1. 7%.

References
  1. Hickling R. , Analysis of echoes from a hollow metallic sphere in water, J. coust Soc. Am. 36, 1124-1137 (1964).
  2. Flax L. , Dragonette L. R. , Überall H. , Theory of elastic resonance excitation by sound scattering, J. Acoust Soc. Am. 63, 723-731 (1978).
  3. Murphy J. D. , Breitenbach E. D. , Überall H. , Resonance scattering of acoustic waves from cylindrical shells, J. Acoust Soc. Am. 64, 677-683 (1978).
  4. Maze G. , Ripoche J . , Visualization of acoustic scattering by elastic cylinders at low ka, J. Acoust Soc. Am. 73, 41-43 (1983).
  5. Maze G. , Izbicki J. -L. , Ripoche J. , Resonances of plates and cylinders: Guided waves, J. Acoust Soc. Am. 77, 1352-1357 (1985).
  6. Maze G. , Acoustic scattering from submerged cylinders, MIIR Im/Re: Experimental and theoretical study, J. Acoust Soc. Am. 89, 2559-2566 (1991).
  7. Léon F. , Lecroq F. , Décultot D. , Maze G. , Scattering of an obliquely incident acoustic wave by an infinite hollow cylindrical shell, J. Acoust Soc. Am. 91, 1388-1397 (1992).
  8. Ripoche J. , Maze G. , A new acoustic spectroscopy: The resonance scattering spectroscopy by the MIIR, "Acoustic Resonance Scattering", Redactor H. Überall, Editor Gordon and Breach, New York, 1992, (ISBN 2-88124-513-7), § 5, 69-103.
  9. Décultot D. , Lecroq F. , Maze G. , Ripoche J. , Acoustic scattering from a cylindrical shell bounded by hemispherical endcaps. Resonance explanation with surface waves propagating in cylindrical and spherical shells, J. Acoust Soc. Am. 94, 2916-2923 (1993).
  10. Veksler N. , Maze G. , Ripoche J. , Porochovskii V. , Scattering of obliquely incident plane acoustic wave by circular cylindrical shell. Results of computations. , Acta Acustica 82, 689-697 (1996) and Maze G. , Léon F. , Veksler N. , Scattering of an obliquely incident plane acoustic wave by circular cylindrical shell. Experimental results, Acta Acustica 84, 1-11 (1997).
  11. Morse S. F. , Marston P. L. , Kaduchak G. , High-frequency backscattering enhancements by thick finite cylindrical shells in water at oblique incidence: Experiments, interpretation and calculations, J. Acoust Soc. Am. 103, 785-794 (1998).
  12. Haumesser L. , Décultot D. , Léon F. , Maze G. , Acoustic scattering from a finite cylindrical shell at oblique incidence : Experimental identification along the shell length, J. Acoust Soc. Am. 111, 2034-2039 (2002).
  13. Talmant M, Quentin G, Rousselot JL, Subrahmanyam JV, and Überall H. Acoustic resonances of thin cylindrical shells and the resonance scattering theory. J. Acoust. Soc. Am. 84, 681-688 (1988).
  14. Frisk G. V. , Dickey J. W. , Überall H. , Surface wave modes on elastic cylinders, J. Acoust Soc. Am. 58, 996-1008 (1975).
  15. Izbicki J. L. , Maze G. , Ripoche J. , Influence of the free modes of vibration on the acoustic scattering of a circular cylindrical shell, J. Acoust Soc. Am. 80, 1215-1219 (1986).
  16. Latif R. , Aassif E. H. , Maze G; Décultot D. , Moudden Ali, Determination of group and phase velocities from time-frequency representation of Wigner-Ville, NDT & E International 32, 415-422 (1999) and Latif R. , Aassif E. H. , Moudden A. , Décultot D. , Faiz B. , Maze G; Determination of the cutoff frequency of an acoustic circumferential wave using a time-frequency analysis, NDT & E International 33, 373-376 (2000).
  17. Yen N, Dragonette L, K. Numrich S. Time-frequency analysis of acoustic scattering from elastic objects. J. Acoust. Soc. Am. 87, 2359-2370 (1990).
  18. Claasen TACM, Mecklenbrauker WFG. The Wigner-Distribution tools for time-frequency signal analysis. Philips J. Res. Vol. 35, n° 3, 4, 5, 217-250, 276-300 and 372-389 (1980).
  19. Brown, M. , Harris, C. , 1994. Neurofuzzy Adaptive Modeling and Control. Prentice Hall.
  20. Jang, J. -S. R. , 1993. ANFIS: adaptive network based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics 23 (3), 665–683.
  21. Mamdani, E. H. , Assilian, S. , 1975. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7 (1), 1–13.
  22. Maze G. , Léon F. , Ripoche J. , and Überall H. Repulsion phenomena in the phase-velocity dispersion curves of circumferential waves on elastic cylindrical shells, J. Acoust. Soc. Amer. 105, 1695-1701 (1999) and Maze G. , Touraine N. , Baillard A. , Décultot D. , Latard V, Derbesse L. , Pernod P. , Merlen A. , A0-wave and A-wave in cylindrical shell immersed in water: influence on the acoustic scattering, (1999) ASME, DECT, Las Vegas, Nevada, USA 12-16 sept 1999, Proceeding on CD-Rom.
  23. Flax L. , Neubauer W. G. , Acoustic reflection from layered elastic absorptive cylinders,J. Acoust. Soc. Am. 61, 307-312 (1977).
  24. Tsukamoto, Y. , 1979. An approach to fuzzy reasoning method. In: Gupta, M. M. , Ragade, R. K. , Yager, R. R. (Eds. ), Advances in Fuzzy Set Theory and Application, North-Holland, Amsterdam, pp. 137–149.
  25. Veksler N. , Resonance Acoustic Spectroscopy, Springer Series on Wave Phenomena, Springer-Verlag, (1993)Berlin, Heidelberg, New York, ISBN 3-540-55638-9.
  26. Pareige P. , Rembert P, Izbicki J. -L. , Maze G. , Ripoche J. , Méthode impulsionnelle numérisée (MIN) pour l'isolement et l'identification des résonances de tubes immergés, (digital impulse method for isolation and identification of resonances of immersed tubes), Physics Letters 135A, 143-146 (1989).
  27. Sun N. H. , Marston P. L. , Ray synthesis of leaky Lamb wave contributions to backscattering from thick cylindrical shells, J. Acoust. Soc. Amer. 91, 1398-1402 (1992).
  28. Hughes DH, Marston PL. Local temporal variance of Wigner's distribution function as a spectroscopic observable: Lamb wave resonances of a spherical shell. J. Acoust. Soc. Amer. 94, 499-505 (1993).
  29. Takagi, T. , Sugeno, M. , 1985. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions onSystems, Man and Cybernetics 15 (1), 116–132.
  30. Sugeno, M. , Kang, G. T. , 1988. Structure identification of fuzzy model. Fuzzy Sets and Systems 28, 15–33.
  31. Jang, J. -S. R. , 1991. Rule extraction using generalized neural networks. In Proceedings of the fourth IFSA World Congress 4, 82–86. Volume for Artificial Intelligence.
  32. Dariouchy A, Aassif EH, Decultot D and Maze G. Acoustic Characterization and Prediction of the Cut-Off Dimensioless Frequency of an Elastic Tube by Neural Networks. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Con
Index Terms

Computer Science
Information Sciences

Keywords

ANFIS acoustic scattering cylindrical shells Wigner-Ville distribution