CFP last date
20 February 2025
Reseach Article

Article:New Tricorn & Multicorns of Ishikawa Iterates

by Yashwant S Chauhan, Rajeshri Rana, Ashish Negi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 7 - Number 13
Year of Publication: 2010
Authors: Yashwant S Chauhan, Rajeshri Rana, Ashish Negi
10.5120/1322-1676

Yashwant S Chauhan, Rajeshri Rana, Ashish Negi . Article:New Tricorn & Multicorns of Ishikawa Iterates. International Journal of Computer Applications. 7, 13 ( October 2010), 25-33. DOI=10.5120/1322-1676

@article{ 10.5120/1322-1676,
author = { Yashwant S Chauhan, Rajeshri Rana, Ashish Negi },
title = { Article:New Tricorn & Multicorns of Ishikawa Iterates },
journal = { International Journal of Computer Applications },
issue_date = { October 2010 },
volume = { 7 },
number = { 13 },
month = { October },
year = { 2010 },
issn = { 0975-8887 },
pages = { 25-33 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume7/number13/1322-1676/ },
doi = { 10.5120/1322-1676 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T19:56:12.877242+05:30
%A Yashwant S Chauhan
%A Rajeshri Rana
%A Ashish Negi
%T Article:New Tricorn & Multicorns of Ishikawa Iterates
%J International Journal of Computer Applications
%@ 0975-8887
%V 7
%N 13
%P 25-33
%D 2010
%I Foundation of Computer Science (FCS), NY, USA
Abstract

We introduce in this paper the dynamics of Relative Superior Tricorn and Multicorns for Ishikawa iteration.

References
  1. W. D. Crowe, R. Hasson, P. J. Rippon, and P. E. D. Strain-Clark, “On the structure of the Mandelbar set”, Nonlinearity (2)(4)(1989), 541-553. MR1020441.
  2. Robert L. Devaney, “A First Course in Chaotic Dynamical Systems: Theory and Experiment”, Addison-Wesley, 1992. MR1202237.
  3. S. Ishikawa, “Fixed points by a new iteration method”, Proc. Amer. Math. Soc.44 (1974), 147-150.
  4. Manish Kumar, and Mamta Rani, “A new approach to superior Julia sets”, J. nature. Phys. Sci, 19(2), (2005), 148-155.
  5. Eike Lau and Dierk Schleicher, “Symmetries of fractals revisited.”, Math. Intelligencer (18)(1)(1996), 45-51. MR1381579 Zbl 0847.30018.
  6. J. Milnor, “Dynamics in one complex variable; Introductory lectures”, Vieweg (1999).
  7. Shizuo Nakane, and Dierk Schleicher, “Non-local connectivity of the tricorn and multicorns”, Dynamical systems and chaos (1) (Hachioji, 1994), 200-203, World Sci. Publ., River Edge, NJ, 1995. MR1479931.
  8. Shizuo Nakane, and Dierk Schleicher, “On multicorns and unicorns: I. Antiholomorphic dynamics. hyperbolic components and real cubic polynomials”, Internat. J. Bifur. Chaos Appl. Sci. Engrg, (13)(10)(2003), 2825-2844. MR2020986.
  9. Ashish Negi, “Generation of Fractals and Applications”, Thesis, Gurukul Kangri Vishwvidyalaya, (2005).
  10. M.O.Osilike, “Stability results for Ishikawa fixed point iteration procedure”, Indian Journal of Pure and Appl. Math., 26(1995), 937-945.
  11. M.O.Osilike, “Iterative construction of fixed points of multivalued operators of the accretive type”, Sochow J.Math. 22(1996), 85-92.
  12. Pitgen, Jurgens and Saupe, “Chaos and Fractals, Springer-Verlag”, NewYork, Inc., 1992.
  13. Mamta Rani, and Vinod Kumar, “Superior Mandelbrot sets”, J. Korea Soc. Math. Educ. Ser. D; Res. Math. Educ. (8)(4)(2004), 279-291.
  14. B. E. Rhoades, “Fixed point iterations for certain nonlinear mappings”, J. Math. Anal. 183 (1994), 118-120.
  15. K. Shirriff, “Fractals from Simple Polynomial Composite Functions,'' Computers & Graphics, 17(6), Nov. 1993, pp 701-703.
  16. R. Winters, “Bifurcations in families of Antiholomorphic and biquadratic maps”, Thesis, Boston Univ. (1990).
Index Terms

Computer Science
Information Sciences

Keywords

Complex dynamics Ishikawa Iteration Relative Superior Tricorn Relative Superior Multicorns