We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

A Photovoltaic (Cell, Module, Array) Simulation and Monitoring Model using MATLAB®/GUI Interface

by M. B. Eteiba, E. T. El Shenawy, J. H. Shazly, A. Z. Hafez
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 69 - Number 6
Year of Publication: 2013
Authors: M. B. Eteiba, E. T. El Shenawy, J. H. Shazly, A. Z. Hafez
10.5120/11845-7579

M. B. Eteiba, E. T. El Shenawy, J. H. Shazly, A. Z. Hafez . A Photovoltaic (Cell, Module, Array) Simulation and Monitoring Model using MATLAB®/GUI Interface. International Journal of Computer Applications. 69, 6 ( May 2013), 14-28. DOI=10.5120/11845-7579

@article{ 10.5120/11845-7579,
author = { M. B. Eteiba, E. T. El Shenawy, J. H. Shazly, A. Z. Hafez },
title = { A Photovoltaic (Cell, Module, Array) Simulation and Monitoring Model using MATLAB®/GUI Interface },
journal = { International Journal of Computer Applications },
issue_date = { May 2013 },
volume = { 69 },
number = { 6 },
month = { May },
year = { 2013 },
issn = { 0975-8887 },
pages = { 14-28 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume69/number6/11845-7579/ },
doi = { 10.5120/11845-7579 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:29:30.554289+05:30
%A M. B. Eteiba
%A E. T. El Shenawy
%A J. H. Shazly
%A A. Z. Hafez
%T A Photovoltaic (Cell, Module, Array) Simulation and Monitoring Model using MATLAB®/GUI Interface
%J International Journal of Computer Applications
%@ 0975-8887
%V 69
%N 6
%P 14-28
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents the implementation of a generalized photovoltaic simulation model using MATLAB®/GUI interface. The model is developed using basic circuit equations of the Photovoltaic (PV) cells including the effects of solar radiation and temperature changes. These effects added in real time operation simultaneously. Since the PV module has nonlinear characteristics, it is necessary to model it for the design and simulation of maximum power point for such system applications. Photovoltaic system characteristic curves as current - voltage (I-V) and power - voltage (P-V) characteristics are drawn according to values change of the temperature and solar radiation which observed in MATLAB®/GUI interface. The simulation results showed that these factors and the corresponding PV model influence the maximum power obtained from PV modules under operating conditions. The simulation model also presented the design of the array and the batteries of the load connected to the photovoltaic system.

References
  1. Afrouzi, H. N. , Mashak, S. V. ,Dastgheib,A. M. ,andTavalaei,J. 2011. Economic Sizing of Solar Array for a Photovoltaic Building in Malaysia with Matlab, First International Conference on Informatics and Computational Intelligence, 306-311.
  2. Sukamongkol, Y. , Chungpaibulpatana S. , and Ongsakul,W. 2002. A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads, Renewable Energy 27 (2) 237–258.
  3. Joshi,A. S. ,Dincer,I. , and Reddy, B. V. 2009. Performance analysis of photovoltaic systems: a review, Renewable and Sustainable Energy Reviews 13 (8) 1884–1897.
  4. Eltawil, M. A. and Zhao, Z. 2010. Grid-connected photovoltaic power systems: Technical and potential problems – a review, Renewable and Sustainable Energy Reviews 14 (1) 112–129.
  5. De Blas, M. A. , Torres, J. L. ,Prieto, E. , and Garcia,A. 2002. Selecting a suitable model for characterizing photovoltaic devices, Renewable Energy 25 (3) 371–380.
  6. Alonso-Garcia,M. C. andRuiz,J. M. 2006. Analysis and modelling the reverse characteristic of photovoltaic cells, Solar Energy Materials and Solar Cells 90 (7-8) 1105–1120.
  7. Soto,W. D. , Klein, S. , and Beckman,W. 2006. Improvement and validation of a model for photovoltaic array performance, Solar Energy 80 (1) 78–88.
  8. Chenni, R. ,Makhlouf,M. ,Kerbache, T. , and Bouzide, A. 2007. A detailed modeling method for photovoltaic cells, Energy 32 (9) 1724–1730.
  9. Celik,A. N. and Acikgoz, N. 2007. Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models, Applied Energy 84 (1) 1–15.
  10. Jung,J. H. and Ahmed,S. 2012. Real-time simulation model development of single crystalline photovoltaic panels using fast computation methods, Solar Energy 86 1826 - 1837.
  11. Sukamongkol,Y. , Chungpaibulpatana,S. , and Ongsakul,W. 2002. A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads, Renewable Energy 27 (2) 237–258.
  12. Jones,A. D. and Underwood,C. P. 2011. A thermal model for photovoltaic systems, Solar Energy 70 (4) 349–359.
  13. Ali. 2005. Characteristics of flow and heat transfer for in-line plate segments inside channel used for photovoltaic modules thermal regulation, Applied Thermal Engineering 25 (8-9) 1381–1401.
  14. Dehra,H. 2009. A two dimensional thermal network model for a photovoltaic solar wall, Solar Energy 83 (11) 1933–1942.
  15. Tina,G. M. and Abate,R. 2008. Experimental verification of thermal behaviour of photovoltaic modules, In: Proc. IEEE Mediterranean Electrotechnical Conf. 579–584.
  16. Gil-Arias, O. and Ortiz-Rivera, E. I. 2008. A general purpose tool for simulating the behavior of pv solar cells, modules and arrays, In: 11th Workshop on Control and Modeling for Power Electronics. 1–5.
  17. Skoplaki,E. and Palyvos, J. 2009. On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/ power correlations, Solar Energy 83 (5) 614–624.
  18. Villalva, Marcelo Gradella, Gazoli, Jonas Rafael, Filho andErnesto Ruppert. 2009. Comprehensive approach to modeling and simulation of photovoltaic arrays, IEEE Trans. Power Electron 24 (5) 1198–1208.
  19. Moradi, M. H. andReisi,A. R. 2011. A hybrid maximum power point tracking method for photovoltaic systems, Solar Energy 85, 2965 - 2976.
  20. Buresch, M. 1983. Photovoltaic Energy Systems Design and Installation,McGraw-Hill, New York.
  21. Francisco,M. and González-Longatt. 2005. Model of Photovoltaic Module in Matlab™, 2do congreso?beroamer?cano de estud?antes de ?ngen?eríaeléctr?ca, electrón?ca y computac?ón 1-5.
  22. Atlas, I. and Sharaf,A. 2007. A photovoltaic array simulation model for matlab-simulinkgui environment, in International Conference on Clean Electrical Power 341 – 345.
  23. Alsayid,B. andJallad, J. 2011. Modeling and Simulation of Photovoltaic Cells/Modules/Arrays, IJRRCS 2 (6) 1327-1331.
  24. Tsai, H. L. , Tu, C. S. , and Su, Y. J. 2008. Development of Generalized Photovoltaic Model Using MATLAB/SIMULINK, Proceedings of the World Congress on Engineering and Computer Science WCECS, San Francisco, USA.
  25. Villalva, M. G. , Gazoli, J. R, and Filho,E. R 2009. Comprehensive approach to modeling and simulation of photovoltaic array, IEEE Trans on Power Electronics 24 (5) 1198-1208.
  26. Chaouachi, A. ,Kamel,R. M. , and Nagasaka,K. 2010. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system, Solar Energy 84 (2010) 2219 - 2229.
Index Terms

Computer Science
Information Sciences

Keywords

Photovoltaic Simulation Monitoring MATLAB®/GUI