We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

On L- fuzzy Generalized Topology

by Heba I. Mustafa
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 69 - Number 28
Year of Publication: 2013
Authors: Heba I. Mustafa
10.5120/12245-8513

Heba I. Mustafa . On L- fuzzy Generalized Topology. International Journal of Computer Applications. 69, 28 ( May 2013), 4-7. DOI=10.5120/12245-8513

@article{ 10.5120/12245-8513,
author = { Heba I. Mustafa },
title = { On L- fuzzy Generalized Topology },
journal = { International Journal of Computer Applications },
issue_date = { May 2013 },
volume = { 69 },
number = { 28 },
month = { May },
year = { 2013 },
issn = { 0975-8887 },
pages = { 4-7 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume69/number28/12245-8513/ },
doi = { 10.5120/12245-8513 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:31:30.164162+05:30
%A Heba I. Mustafa
%T On L- fuzzy Generalized Topology
%J International Journal of Computer Applications
%@ 0975-8887
%V 69
%N 28
%P 4-7
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we introduce the concepts of L-fuzzy generalized neighborhood system(f-gns for short) and L-fuzzy generalized topology (fgt, for short)(where L is a fuzzy lattice) which are generalizations of generalized topology and neighborhood systems defined by Csaszar[5]. We also introduce and investigate with the help of these new concepts the concepts of L-( 1; 2) continuity and L-fuzzy generalized continuity on f-gns. The relations between these concepts are investigated and several examples are presented. ifx

References
  1. G. Abbaspour and A. Taghavi, A note on generalized topology, international mathematical forum, 6(1)(2011), 19-24.
  2. A. Bargiela,W. Pedrycz, Granular Computing: An Introduction. Kluwer Academic Publishers, Hingham, MA (2003).
  3. C. L. Chang, Fuzzy topological spaces, J Math. Anal. Appl. , 24(1968), 182-190.
  4. A. Csaszar, Generalized open sets, Acta Math. Hungar. , 75(1997), 65-87.
  5. A. Csaszar, Generalized continuity, Acta Math. Hungar. , 96(2002), 351-357.
  6. A. Csaszar, Separation axioms for generalized topologies, Acta Math Hungar, 104(2004), 63-69.
  7. A. Csaszar, Extremally disconnected generalized topologies, Annales Univ Budapest, Sectio Math, 47(2004), 151-161.
  8. B. Ganter, P. Wille, formal concept analysis, springer, Berlin, Germany, 1999.
  9. G. Gerz et. al, A compendium of continuous lattices, (Springer, Berlin, 1980).
  10. J. A. Goguen, L-fuzzy subsets, J Math. Anall. Appl. ,18(1967), 115-174.
  11. J. A. Goguen, The fuzzy Tychonof theorem, J Math. Anall. Appl. , 43(1973), 734-742.
  12. H. Heijmans, Morphological Image Operators. Academic Press, New York, NY (1994).
  13. J. Jarvinen, Set operations for L-fuzzy sets. In: Rough Sets amd Intelligent Sys- tem radigms. Volume 4585 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2007), 221-229.
  14. J. Jarvinen, Lattice theory for rough sets. In: Transactions on Rough Sets VI. Volume 4374 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, (2007), 400498.
  15. Y. Raun, J. Qin, Lattice-valued logic, springer, Heidelberg, Germany,2003.
  16. J. Thomas, S. Jacob, -Compactness in Generalized Topological Spaces,Journal of Advanced Studies in Topology, 3(3)(2012), 18-22.
  17. G. Urcid, N. Valdiviezo, J. Ritter, Lattice algebra approach to color image segmentation. Journal of Mathematical Imaging and Vision 42(2-3) (2012), 150-162.
  18. M. W. Warner, frame fuzzy points and membership, fuzzy set and systems 42(1991)103-110.
  19. M. W. Warner, fuzzy topology with respect to continuous lattices, fuzzy set and systems, 35(1990), 85-91.
  20. G. Xun and G. Ying, separations in generalized topological spaces, Appl. Math. J. Chinese Univ, 25(2010), 243-252.
  21. L. A. Zadeh, fuzzy sets, Information and control, (1995), 353-383.
Index Terms

Computer Science
Information Sciences

Keywords

Fuzzy lattice L-fuzzy generalized topology L-fuzzy generalized neighborhood systems L-fuzzy generalized continuity