CFP last date
20 February 2025
Reseach Article

On L- fuzzy Generalized Topology

by Heba I. Mustafa
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 69 - Number 28
Year of Publication: 2013
Authors: Heba I. Mustafa
10.5120/12245-8513

Heba I. Mustafa . On L- fuzzy Generalized Topology. International Journal of Computer Applications. 69, 28 ( May 2013), 4-7. DOI=10.5120/12245-8513

@article{ 10.5120/12245-8513,
author = { Heba I. Mustafa },
title = { On L- fuzzy Generalized Topology },
journal = { International Journal of Computer Applications },
issue_date = { May 2013 },
volume = { 69 },
number = { 28 },
month = { May },
year = { 2013 },
issn = { 0975-8887 },
pages = { 4-7 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume69/number28/12245-8513/ },
doi = { 10.5120/12245-8513 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:31:30.164162+05:30
%A Heba I. Mustafa
%T On L- fuzzy Generalized Topology
%J International Journal of Computer Applications
%@ 0975-8887
%V 69
%N 28
%P 4-7
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we introduce the concepts of L-fuzzy generalized neighborhood system(f-gns for short) and L-fuzzy generalized topology (fgt, for short)(where L is a fuzzy lattice) which are generalizations of generalized topology and neighborhood systems defined by Csaszar[5]. We also introduce and investigate with the help of these new concepts the concepts of L-( 1; 2) continuity and L-fuzzy generalized continuity on f-gns. The relations between these concepts are investigated and several examples are presented. ifx

References
  1. G. Abbaspour and A. Taghavi, A note on generalized topology, international mathematical forum, 6(1)(2011), 19-24.
  2. A. Bargiela,W. Pedrycz, Granular Computing: An Introduction. Kluwer Academic Publishers, Hingham, MA (2003).
  3. C. L. Chang, Fuzzy topological spaces, J Math. Anal. Appl. , 24(1968), 182-190.
  4. A. Csaszar, Generalized open sets, Acta Math. Hungar. , 75(1997), 65-87.
  5. A. Csaszar, Generalized continuity, Acta Math. Hungar. , 96(2002), 351-357.
  6. A. Csaszar, Separation axioms for generalized topologies, Acta Math Hungar, 104(2004), 63-69.
  7. A. Csaszar, Extremally disconnected generalized topologies, Annales Univ Budapest, Sectio Math, 47(2004), 151-161.
  8. B. Ganter, P. Wille, formal concept analysis, springer, Berlin, Germany, 1999.
  9. G. Gerz et. al, A compendium of continuous lattices, (Springer, Berlin, 1980).
  10. J. A. Goguen, L-fuzzy subsets, J Math. Anall. Appl. ,18(1967), 115-174.
  11. J. A. Goguen, The fuzzy Tychonof theorem, J Math. Anall. Appl. , 43(1973), 734-742.
  12. H. Heijmans, Morphological Image Operators. Academic Press, New York, NY (1994).
  13. J. Jarvinen, Set operations for L-fuzzy sets. In: Rough Sets amd Intelligent Sys- tem radigms. Volume 4585 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2007), 221-229.
  14. J. Jarvinen, Lattice theory for rough sets. In: Transactions on Rough Sets VI. Volume 4374 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, (2007), 400498.
  15. Y. Raun, J. Qin, Lattice-valued logic, springer, Heidelberg, Germany,2003.
  16. J. Thomas, S. Jacob, -Compactness in Generalized Topological Spaces,Journal of Advanced Studies in Topology, 3(3)(2012), 18-22.
  17. G. Urcid, N. Valdiviezo, J. Ritter, Lattice algebra approach to color image segmentation. Journal of Mathematical Imaging and Vision 42(2-3) (2012), 150-162.
  18. M. W. Warner, frame fuzzy points and membership, fuzzy set and systems 42(1991)103-110.
  19. M. W. Warner, fuzzy topology with respect to continuous lattices, fuzzy set and systems, 35(1990), 85-91.
  20. G. Xun and G. Ying, separations in generalized topological spaces, Appl. Math. J. Chinese Univ, 25(2010), 243-252.
  21. L. A. Zadeh, fuzzy sets, Information and control, (1995), 353-383.
Index Terms

Computer Science
Information Sciences

Keywords

Fuzzy lattice L-fuzzy generalized topology L-fuzzy generalized neighborhood systems L-fuzzy generalized continuity