CFP last date
20 February 2025
Reseach Article

Common Fixed Point Theorem with Refined Condition of Weak Contraction by Generalized Altering Distance Function

by P. L. Powar, G. R. K. Sahu
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 69 - Number 2
Year of Publication: 2013
Authors: P. L. Powar, G. R. K. Sahu
10.5120/11814-7485

P. L. Powar, G. R. K. Sahu . Common Fixed Point Theorem with Refined Condition of Weak Contraction by Generalized Altering Distance Function. International Journal of Computer Applications. 69, 2 ( May 2013), 19-22. DOI=10.5120/11814-7485

@article{ 10.5120/11814-7485,
author = { P. L. Powar, G. R. K. Sahu },
title = { Common Fixed Point Theorem with Refined Condition of Weak Contraction by Generalized Altering Distance Function },
journal = { International Journal of Computer Applications },
issue_date = { May 2013 },
volume = { 69 },
number = { 2 },
month = { May },
year = { 2013 },
issn = { 0975-8887 },
pages = { 19-22 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume69/number2/11814-7485/ },
doi = { 10.5120/11814-7485 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:29:40.937814+05:30
%A P. L. Powar
%A G. R. K. Sahu
%T Common Fixed Point Theorem with Refined Condition of Weak Contraction by Generalized Altering Distance Function
%J International Journal of Computer Applications
%@ 0975-8887
%V 69
%N 2
%P 19-22
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In the present paper, the authors have obtained a unique fixed point theorem for four maps using generalized altering distance function in four variables by considering a refined form of weak contraction than the form used in Theorem 2. 1 of [17] which reduces the computational part quite significantly.

References
  1. Abbas, M. , Ali Khan, M. , Common fixed point theorem of two mappings satisfying a generalized weak contractive conditions. Int. J. Math. Sci. 2009, 9 Article ID 131068 (2009).
  2. Agarwal, R. P. , El-Gebeily, M. A. , O'Regan, D. , Generalized contractions in partially ordered metric space. Appl. Anal. 87, 109-116 (2008).
  3. Alber, YaI, Guerre-Delabriere, S. , Principles of weakly contractive maps in Hilber spaces. Oper Theory. Adv. Appl. 98, 7-22 (1997).
  4. Babu, G. V. R. and Shaik Ismail, A fixed point theorem by altering distances, Bull Cal. Math Soc, 93(5), 393-398, (2001).
  5. Babu, G. V. R. Generalization of fixed point theorems relating to the diameter of orbits by using a control function, Tamkang J. Math, 35(2), 159-168 (2004).
  6. Banach, S. , Surles operations dans les ensembles abstraits et leur application aux equationsitegrales, Fund. Math. , 3, 133-181, (1922).
  7. Choudhury, B. S. , A common unique fixed point result in metric spaces involving generalized altering distances, Math. Commun. 10, 105-110 (2005).
  8. Choudhury, B. S. and Dutta, P. N. , A unified fixed point result in metric spaces involving a two variable function, Filomat, 14, 43-48 (2000).
  9. Dutta, P. N. , Choudhury, B. S. , A generalization of contraction principles in metric spaces, Fixed Point Theory Appl. 2008, 8 Article ID 406368 (2008).
  10. Fisher, B. , A common fixed point theorem for commuting mappings, Math. Sem. Notes, 7, 297-300, (1979).
  11. Jungck, G. , Murthy, P. P. , Cho, Y. J. , Compatible mappings of type (A) and common fixed points, Math. Japonica, 38, 381-390, (1993).
  12. Khan, M. S. , Swalesh, M. Sessa, S. , Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 30, 1-9 (1984).
  13. Murthy, P. P. , Important tools and possible applications of metric fixed point theory, Nonlinear analysis 47, 3479-3490 (2001).
  14. Murthy, P. P. , Cho, Y. J. , Fisher, B. , Common fixed points of Gregus type mappings, Glasnik Mathematicki, 30, 335-341, (1995).
  15. O'Regan, D. , Petrusel, A. , Fixed point theorems for generalize contractions in ordered metric spaces. J. Math. Anal Appl. 341, 1241-1252 (2008).
  16. Pathak, H. K, Cho, Y. J. , Kang, S. M. , Remarks on R-weakly commuting mappings and Common fixed point theorem, Bull. Korean Math. Soc. , 34, 247-257, (1997).
  17. Rao, K. P. R. , Babu A. Som, Babu D Vasu, Common fixed points through Generalized altering distance function. Intenational mathematical forum, 2, no. 65, 3233-3239, (2007).
  18. Rhoades, B. E. , Some theorems on weakly contractive maps, Nonlinear Anal, 47, 2683-2693 (2001).
  19. Sastry K. P. R. , Naidu, S. V. R, Babu, G. V. R. and Naidu, G. A. , Generalization of common fixed point theorems for weakly commuting maps by altering distances. Tamkang J Math 31, 243-250 (2000).
  20. Sastry K. P. R. and Babu, G. V. R. , Some fixed point theorems by altering distances between the points, Indian J. Pure Appl. Math. 30(6), 641-647 (1999).
  21. Sastry, K. P. R. and Babu, G. V. R. . Fixed point theorems in metric spaces by altering distances, Bull. Cal. Math. Soc. 90, 175-182 (1998).
  22. Zhang, Q. , Song, Y, Fixed point theory for generalized –weakly contraction. Appl. Math. Lett. 22, 75-78, (2009).
Index Terms

Computer Science
Information Sciences

Keywords

Fixed point compatible of type (P) or mappings Altering distance function weak contraction