CFP last date
20 January 2025
Reseach Article

Community Structure based on Node Traffic in Networks

by Abhineet Anand, Vikas Kr. Sihag, P S V S Sridhar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 69 - Number 13
Year of Publication: 2013
Authors: Abhineet Anand, Vikas Kr. Sihag, P S V S Sridhar
10.5120/11901-7966

Abhineet Anand, Vikas Kr. Sihag, P S V S Sridhar . Community Structure based on Node Traffic in Networks. International Journal of Computer Applications. 69, 13 ( May 2013), 15-20. DOI=10.5120/11901-7966

@article{ 10.5120/11901-7966,
author = { Abhineet Anand, Vikas Kr. Sihag, P S V S Sridhar },
title = { Community Structure based on Node Traffic in Networks },
journal = { International Journal of Computer Applications },
issue_date = { May 2013 },
volume = { 69 },
number = { 13 },
month = { May },
year = { 2013 },
issn = { 0975-8887 },
pages = { 15-20 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume69/number13/11901-7966/ },
doi = { 10.5120/11901-7966 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:30:08.816985+05:30
%A Abhineet Anand
%A Vikas Kr. Sihag
%A P S V S Sridhar
%T Community Structure based on Node Traffic in Networks
%J International Journal of Computer Applications
%@ 0975-8887
%V 69
%N 13
%P 15-20
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Finding community structure in networks has been always the prerequisite for the analysis of network structure and its properties. Based on node traffic, an efficient method for calculating betweenness measure is proposed. It is used iteratively to remove edges with high betweenness score from the network, thus splitting network into communities. The score is recalculated after each removal. The algorithm is best suited for networks with traffic generation capabilities.

References
  1. M. Girvan and M. E. J. Newman (2002). "Community structure in social and biological networks". Proc. Natl. Acad. Sci. USA 99 (12): 7821–7826. doi:10. 1073/pnas. 122653799. PMC 122977. PMID 12060727.
  2. S. Fortunato (2010). "Community detection in graphs". Phys. Rep. 486 (3-5): 75–174. doi: 10. 1016/j. physrep. 2009. 11. 002.
  3. M. A. Porter, J. -P. Onnela and P. J. Mucha (2009). "Communities in Networks". Not. Amer. Math. Soc. 56: 1082–1097, 1164–1166.
  4. M. E. J. Newman (2004). "Detecting community structure in networks". Eur. Phys. J. B 38 (2): 321–330. doi:10. 1140/epjb/e2004-00124-y.
  5. M. E. J. Newman (2004). "Fast algorithm for detecting community structure in networks". Phys. Rev. E 69 (6): 066133. doi:10. 1103/PhysRevE. 69. 066133.
  6. L. Danon, J. Duch, A. Díaz-Guilera and A. Arenas (2005). "Comparing community structure identification". J. Stat. Mech. 2005 (09): P09008. doi:10. 1088/1742-5468/2005/09/P09008.
  7. S. Fortunato and M. Barthelemy (2007). "Resolution limit in community detection". Proceedings of the National Academy of Science of the USA 104 (1): 36–41. doi:10. 1073/pnas. 0605965104. PMC 1765466. PMID 17190818.
  8. B. H. Good, Y. -A. de Montjoye and A. Clauset (2010). "The performance of modularity maximization in practical contexts". Phys. Rev. E 81 (4): 046106. doi:10. 1103/PhysRevE. 81. 046106.
  9. V. D. Blondel, J. -L. Guillaume, R. Lambiotte and E. Lefebvre (2008). "Fast unfolding of community hierarchies in large networks". J. Stat. Mech. 2008 (10): P10008. doi:10. 1088/1742-5468/2008/10/P10008.
  10. M. G. Everett and S. P. Borgatti (1998). "Analyzing Clique Overlap Connections". Connections 21: 49.
  11. T. S. Evans (2010). "Clique Graphs and Overlapping Communities". J. Stat. Mech. : P12037. arXiv:arXiv:1009. 0638. doi:10. 1088/1742-5468/2010/12/P12037.
  12. G. Palla, I. Derényi, I. Farkas and T. Vicsek (2005). "Uncovering the overlapping community structure of complex networks in nature and society". Nature 435 (7043): 814–818. doi:10. 1038/nature03607. PMID 15944704.
  13. Condon, A. ; Karp, R. M. (2001). "Algorithms for graph partitioning on the planted partition model". Random Struct. Algor. 18 (2): 116–140. doi:10. 1002/1098-2418(200103)18:2<116::AID-RSA1001>3. 0. CO;2-2.
  14. Lancichinetti, S. Fortunato and F. Radicchi (2008). "Benchmark graphs for testing community detection algorithms". Phys. Rev. E 78 (4): 046110. doi:10. 1103/PhysRevE. 78. 046110.
  15. Mechthild Stoer and Frank Wagner, "A simple Min-Cut Algorithm". Proceedings of the 2nd Annual European symposium on Algorithms. Lecture Notes in Computer Science, Vol 855,1994.
  16. L. C. Freeman, Sociometry 40, 35(1977).
Index Terms

Computer Science
Information Sciences

Keywords

Betweenness measure Community structure Node traffic