We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

IRBBO for Gain Maximization of Fifteen-Element Yagi-Uda Antenna

by Gagan Sachdeva, Dilpal Singh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 68 - Number 9
Year of Publication: 2013
Authors: Gagan Sachdeva, Dilpal Singh
10.5120/11604-6977

Gagan Sachdeva, Dilpal Singh . IRBBO for Gain Maximization of Fifteen-Element Yagi-Uda Antenna. International Journal of Computer Applications. 68, 9 ( April 2013), 1-5. DOI=10.5120/11604-6977

@article{ 10.5120/11604-6977,
author = { Gagan Sachdeva, Dilpal Singh },
title = { IRBBO for Gain Maximization of Fifteen-Element Yagi-Uda Antenna },
journal = { International Journal of Computer Applications },
issue_date = { April 2013 },
volume = { 68 },
number = { 9 },
month = { April },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume68/number9/11604-6977/ },
doi = { 10.5120/11604-6977 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:28:59.580891+05:30
%A Gagan Sachdeva
%A Dilpal Singh
%T IRBBO for Gain Maximization of Fifteen-Element Yagi-Uda Antenna
%J International Journal of Computer Applications
%@ 0975-8887
%V 68
%N 9
%P 1-5
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Biogeography is the study of distribution of biological species, over space and time, among random habitats. Recently introduced Biogeography Based Optimization (BBO) is a technique, where solutions of the problem are termed as habitats. Feature, i. e. , Suitability Index Variable (SIV), sharing among various habitats is made to occur with migration operator where as exploration of new SIVs is done with mutation operator. Yagi-Uda antenna is a widely used antenna design due to various useful properties of high gain, low cost and ease of construction. Immigration Refusal BBO (IRBBO) is a BBO variant introduced with the objective of improved performance and faster convergence. Designing a Yagi-Uda antenna involves determination of element lengths and spacings between them to get desired radiation characteristics. The gain of Yagi-Uda antenna is difficult to optimize as there is no analytical formula to determine gain directly, it makes relationship between antenna parameters and its characteristics highly complex and non-linear. In this paper, fifteen-element Yagi-Uda antenna is optimized for maximum gain using IRBBO. The obtained results are compared with Standard BBO, Bi-Swarm optimization, Ellipsoid Algorithm and Genetic Algorithm (GA). IRBBO shows better results among other compared optimization techniques for Yagi-Uda antenna design problem

References
  1. E. E. Altshuler and D. S. Linden. Wire-antenna Designs using Genetic Algorithms. Antennas and Propagation Magazine, IEEE, 39(2):33–43, 1997.
  2. A. N. Amaral, U. C. Resende, and E. N. Gonc¸alves. Yagi-uda antenna optimization by elipsoid algorithm. pages 503– 506, 2011.
  3. A. Wallace. The Geographical Distribution of Animals. Boston, MA: Adamant Media Corporation, Two:232–237, 2005.
  4. S. Baskar, A. Alphones, P N Suganthan, and J J Liang. Design of Yagi-Uda Antennas using Comprehensive Learning Particle Swarm Optimisation. IEEE, 152(5):340–346, 2005.
  5. JH Bojsen, H. Schjaer-Jacobsen, E. Nilsson, and J. Bach Andersen. Maximum Gain of Yagi–Uda Arrays. Electronics Letters, 7(18):531–532, 1971.
  6. G. J. Burke and A. J. Poggio. Numerical Electromagnetics Code (NEC) method of moments. NOSC Tech. DocLawrence Livermore National Laboratory, Livermore, Calif, USA, 116:1–131, 1981.
  7. C. Chen and D. Cheng. Optimum Element Lengths for Yagi-Uda Arrays. IEEE Transactions on Antennas and Propagation,, 23(1):8–15, 1975.
  8. D. Cheng and C. Chen. Optimum Element Spacings for Yagi-Uda Arrays. IEEE Transactions on Antennas and Propagation,, 21(5):615–623, 1973.
  9. D. K. Cheng. Optimization Techniques for Antenna Arrays. Proceedings of the IEEE, 59(12):1664–1674, 1971.
  10. D. K. Cheng. Gain Optimization for Yagi-Uda Arrays. Antennas and Propagation Magazine, IEEE, 33(3):42–46, 1991.
  11. D. Correia, A. J. M. Soares, and M. A. B. Terada. Optimization of gain, impedance and bandwidth in Yagi-Uda Antennas using Genetic Algorithm. IEEE, 1:41–44, 1999.
  12. C. Darwin. The Orign of Species. New York : gramercy, Two:398–403, 1995.
  13. D. Du, D. Simon, and M. Ergezer. Biogeography-based Optimization Combined with Evolutionary Strategy and Immigration Refusal. IEEE, 1:997–1002, 2009.
  14. H. Ehrenspeck and H. Poehler. A New Method for Obtaining Maximum Gain from Yagi Antennas. IRE Transactions on Antennas and Propagation,, 7(4):379–386, 1959.
  15. R. M. Fishenden and E. R. Wiblin. Design of Yagi Aerials. Proceedings of the IEE-Part III: Radio and Communication Engineering, 96(39):5, 1949.
  16. E. A. Jones andW. T. Joines. Design of Yagi-Uda Antennas using Genetic Algorithms. IEEE Transactions on Antennas and Propagation,, 45(9):1386–1392, 1997.
  17. Y. Kuwahara. Multiobjective Optimization Design of Yagi- Uda Antenna. IEEE Transactions on Antennas and Propagation,, 53(6):1984–1992, 2005.
  18. J. Y. Li. Optimizing Design of Antenna using Differential Evolution. IEEE, 1:1–4, 2007.
  19. J. Y. Li. A bi-swarm optimizing strategy and its application of antenna design. Journal of Electromagnetic Waves and Applications, 23(14-15):1877–1886, 2009.
  20. Y. Li, F. Yang, J. OuYang, and H. Zhou. Yagi-uda antenna optimization based on invasive weed optimization method. Electromagnetics, 31(8):571–577, 2011.
  21. R. H. MacArthur and E. O. Wilson. The Theory of Island Biogeography. Princeton Univ Pr, 1967.
  22. M. Rattan, M. S. Patterh, and B. S. Sohi. Optimization of Yagi-Uda Antenna using Simulated Annealing. Journal of Electromagnetic Waves and Applications, 22, 2(3):291– 299, 2008.
  23. D. G. Reid. The Gain of an Idealized Yagi Array. Journal of the Institution of Electrical Engineers-Part IIIA: Radiolocation,, 93(3):564–566, 1946.
  24. G. Sachdeva, D. Singh, and S. Singh. Gain Optimization of 15-Element Yagi-Uda Antenna using BBO. In proceeding of IEEE, 2013.
  25. L. C. Shen. Directivity and Bandwidth of Single-band and Double-band Yagi Arrays. IEEE Transactions on Antennas and Propagation,, 20(6):778–780, 1972.
  26. D. Simon. Biogeography-based Optimization. IEEE Transactions on Evolutionary Computation,, 12(6):702–713, 2008.
  27. U. Singh, H. Kumar, and T. S. Kamal. Design of Yagi-Uda Antenna Using Biogeography Based Optimization. IEEE Transactions on Antennas and Propagation,, 58(10):3375– 3379, 2010.
  28. U. Singh, M. Rattan, N. Singh, and M. S. Patterh. Design of a Yagi-Uda Antenna by Simulated Annealing for Gain, Impedance and FBR. IEEE, 1:974–979, 2007.
  29. Shintaro Uda and Yasuto Mushiake. Yagi-Uda Antenna. Maruzen Company, Ltd, 1954.
  30. N. V. Venkatarayalu and T. Ray. Single and Multi-Objective Design of Yagi-Uda Antennas using Computational Intelligence. IEEE, 2:1237–1242, 2003.
  31. N. V. Venkatarayalu and T. Ray. Optimum Design of Yagi- Uda Antennas Using Computational Intelligence. IEEE Transactions on Antennas and Propagation,, 52(7):1811– 1818, 2004.
  32. H. J. Wang, K. F. Man, C. H. Chan, and K. M. Luk. Optimization of Yagi array by Hierarchical Genetic Algorithms. IEEE, 1:91–94, 2003.
  33. H. Yagi. Beam Transmission of Ultra Short Waves. Proceedings of the Institute of Radio Engineers, 16(6):715– 740, 1928. 5
Index Terms

Computer Science
Information Sciences

Keywords

Yagi-Uda Antenna Biogeography Based Optimization Antenna Gain Genetic Algorithm Bi-Swarm Optimization Ellipsoid Algorithm