CFP last date
20 January 2025
Reseach Article

Performance Analysis of 200-Gb/s Low Complexity Transmission in Second Window

by T. K. Mohanapriya, A. Sivanantharaja, D. Shanmuga Sundar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 68 - Number 22
Year of Publication: 2013
Authors: T. K. Mohanapriya, A. Sivanantharaja, D. Shanmuga Sundar
10.5120/11709-7282

T. K. Mohanapriya, A. Sivanantharaja, D. Shanmuga Sundar . Performance Analysis of 200-Gb/s Low Complexity Transmission in Second Window. International Journal of Computer Applications. 68, 22 ( April 2013), 5-8. DOI=10.5120/11709-7282

@article{ 10.5120/11709-7282,
author = { T. K. Mohanapriya, A. Sivanantharaja, D. Shanmuga Sundar },
title = { Performance Analysis of 200-Gb/s Low Complexity Transmission in Second Window },
journal = { International Journal of Computer Applications },
issue_date = { April 2013 },
volume = { 68 },
number = { 22 },
month = { April },
year = { 2013 },
issn = { 0975-8887 },
pages = { 5-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume68/number22/11709-7282/ },
doi = { 10.5120/11709-7282 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:28:35.221073+05:30
%A T. K. Mohanapriya
%A A. Sivanantharaja
%A D. Shanmuga Sundar
%T Performance Analysis of 200-Gb/s Low Complexity Transmission in Second Window
%J International Journal of Computer Applications
%@ 0975-8887
%V 68
%N 22
%P 5-8
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, a low complexity up to 200-Gb/s is analyzed over a 38-km standard single mode fiber transmission system in the 1310-nm wavelength domain. The system is based exclusively on semiconductor component without any form of dispersion compensation. The results showed that the 1310-nm wavelength domain can support low cost and low complexity high speed transmission.

References
  1. IEEE 802. 3ba-2010 [Online]. Available: http://standards. ieee. org/getiee802/download/802. 3 ba-2010. pdf.
  2. T. N. Nielsen, et al. , "8×10 Gb/s 1. 3 µm unrepeated transmission over a distance of 141 km with Raman post- and pre-amplifiers," IEEE photon. Technol. lett. vol. 10, no. 10, pp. 1492-1494, Oct. 1998.
  3. J. P. Turkiewicz, A. M. J. Koonen, G. D. Khoe, and H. Waardt, "Do we need 1310 nm transmission in modern networks?" in proc. Opt. commun. Eur. Conf. , Cannes, France, 2006, pp. 1-2, paper Te3p. 153.
  4. K. Adachi, et al. , "25-Gb/s multi-channel 1. 3µm surface-emitting lens-integrated DFB laser arrays," J. Lightw. Technol. , vol. 29, no. 19, pp. 2899-2905, Oct. 1, 2011.
  5. T. Fujisawa, et al. , "1. 3µm 4×25-Gb/s, monolithically integrated light source for metro area 100-Gb/s ethernet,"IEEE photon. Technol. Lett. , vol. 23, no. 6, pp. 356-358, Mar. 15, 2011.
  6. T. Fujisawa. et al. , "1. 3µm, 50 Gb/s electro absorption modulators integrated with DFB laser for beyond 100G parallel LAN applications," Electron. lett. , vol. 47, no. 12, pp. 708-710. Jun. 2011.
  7. ITU-T G. 652 Characteristics of a Single-Mode Optical Fiber and Cable. (2009,Nov. ). [Online]. Available: http://www. itu. int/rec/T-REC-G. 652-200911-I.
  8. Fujisawa, T. , Takahata, K. , Kobayashi, W. , Tadokoro, T. , Fujiwara, N. , Kanazawa, S. , and Kano, F. : '1. 3-mm, 50-Gbit/s EADFB lasers for 400GbE'. Proc. OFC'11, Los Angeles, CA, USA, 2011 (OWD4)
  9. E. J. M. Verdurmen et al, Elec. Lett. , 41(2005), 349
  10. J. P. Turkiewicz et al, Elec. Lett. , 39(2003), 795
  11. G. Lehmann, E. Meissner, S. Spalter, Y. R. Zhou, E. Sikora, and A. Lord "Dispersion tolerances at 160 Gb/s,"in Proc. Network and Optical Comm. 2002, Darmstadt, Germany, pp. 95-100.
  12. T. Tadokoro, et al. , IEEE Photon. Technol. Lett. , 21, 16, 1154-1156 (2009).
  13. J. P. Turkiewicz, E. Tangdiongga, H. Rohde, W. Schairer, G. Lehmann, G. D. Khoe, and H. de Waardt, "Simultaneous high-speed OTDM add drop multiplexing using GT-UNI switch," Electron. lett. vol. 39, no. 10, pp. 795-796,2003.
Index Terms

Computer Science
Information Sciences

Keywords

Optical fiber communication electro absorption modulator semiconductor optical amplifier wavelength division multiplexing