We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Approximate Solution of Wave Equation using Fuzzy Number

by M. Aylin Bayrak
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 68 - Number 19
Year of Publication: 2013
Authors: M. Aylin Bayrak
10.5120/11684-7389

M. Aylin Bayrak . Approximate Solution of Wave Equation using Fuzzy Number. International Journal of Computer Applications. 68, 19 ( April 2013), 1-3. DOI=10.5120/11684-7389

@article{ 10.5120/11684-7389,
author = { M. Aylin Bayrak },
title = { Approximate Solution of Wave Equation using Fuzzy Number },
journal = { International Journal of Computer Applications },
issue_date = { April 2013 },
volume = { 68 },
number = { 19 },
month = { April },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-3 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume68/number19/11684-7389/ },
doi = { 10.5120/11684-7389 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:28:16.518469+05:30
%A M. Aylin Bayrak
%T Approximate Solution of Wave Equation using Fuzzy Number
%J International Journal of Computer Applications
%@ 0975-8887
%V 68
%N 19
%P 1-3
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, the fuzzy solution of the initial boundary value problem of hyperbolic one-dimensional wave equation is considered. The solution by finite difference method is observed by using fuzzy intervals.

References
  1. Zadeh L. A. , Fuzzy Sets, Inform. Control 8 (1965)338-353.
  2. Dubois D. , Prade H. , Fuzzy Sets and Systems. Theory and Applications, Academic Press, New York,1980.
  3. Dubois D. , Prade H. , Possibility Theory. An approach to computerized processing of uncertainty, Plenum Press, New York, 1988.
  4. Kaleva O. , Fuzzy Differential Equations, Fuzzy sets and systems 24 (1987)301-317.
  5. Kaleva O. , The cauchy problem for fuzzy differential equations, Fuzzy sets and systems 35 (1990)389-396.
  6. Abbasbandy S. , Allahviranloo T. , Numerical solution of fuzzy differential equations by Taylor method, Journal of Computational Methods in Applied Mathematics 2 (2002)113-124.
  7. Abbasbandy S. , Allahviranloo T. , O. Lopez-Pouso, J. J. Nieto, Numerical methods for fuzzy differential inclusions, Journal of Computer and Mathematics with Applications 48 (2004)1633- 1641.
  8. Friedman M. , Ma M. , Kandel A. , Numerical solutions of fuzzy differential and integral equations, Fuzzy sets and systems 106 (1999)35-48.
  9. Ma M. , Friedman M. , Kandel A. , Numerical solutions of fuzzy differential equations, Fuzzy sets and systems 86 (1997) 331-334.
  10. Kaufman A. , Gupta M. M. , Introduction to fuzzy arithmetic, Theory and applications, Van Nostrand Reinhold Co. Inc. , Workingham, Berkshire,1984.
  11. Dutta P. , Boruah H. , Ali T. , Fuzzy arithmetic with and without using -cut method: A comparative study, International Journal of Latest trends in computing 2(1) (2011)99-107.
  12. Guerra M. L. , Stefanini L. , Approximate fuzzy arithmetic operations using monotonic interpolants, Fuzzy sets and systems 150 (2005)5-33.
  13. Ramana B. V. , Higher Engineering Mathematics, McGraw Hill Publishing Company, New Delhi, 2008.
  14. Saikia R. K. , Fuzzification of heat equation, International journal of computer applications 46(21) (2012)23-26. 3
Index Terms

Computer Science
Information Sciences

Keywords

-cut fuzzy membership function triangular fuzzy number fuzzy interval