CFP last date
20 December 2024
Reseach Article

Biogeography based Optimization for Gain Maximization of Nine-Element Yagi-Uda Antenna

by Gagan Sachdeva, Ruchi Kansal, Ashwani Singla
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 68 - Number 15
Year of Publication: 2013
Authors: Gagan Sachdeva, Ruchi Kansal, Ashwani Singla
10.5120/11652-7157

Gagan Sachdeva, Ruchi Kansal, Ashwani Singla . Biogeography based Optimization for Gain Maximization of Nine-Element Yagi-Uda Antenna. International Journal of Computer Applications. 68, 15 ( April 2013), 1-4. DOI=10.5120/11652-7157

@article{ 10.5120/11652-7157,
author = { Gagan Sachdeva, Ruchi Kansal, Ashwani Singla },
title = { Biogeography based Optimization for Gain Maximization of Nine-Element Yagi-Uda Antenna },
journal = { International Journal of Computer Applications },
issue_date = { April 2013 },
volume = { 68 },
number = { 15 },
month = { April },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-4 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume68/number15/11652-7157/ },
doi = { 10.5120/11652-7157 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:27:53.349874+05:30
%A Gagan Sachdeva
%A Ruchi Kansal
%A Ashwani Singla
%T Biogeography based Optimization for Gain Maximization of Nine-Element Yagi-Uda Antenna
%J International Journal of Computer Applications
%@ 0975-8887
%V 68
%N 15
%P 1-4
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Biogeography-Based Optimization (BBO) is a recently introduced population based algorithms which has shown impressive performance over other Evolutionary Algorithms (EAs). BBO is based on the study of distribution of biological organisms over space and time. BBO is a stochastic optimization technique, here, solutions for problem are considered as habitats whereas feature sharing, i. e. Suitability Index Variables (SIVs), among the habitats is known as migration and exploration of new SIV is accomplished as mutation. Yagi-Uda antenna design is most widely used antenna at VHF and UHF frequencies due to high gain, directivity and ease of construction. However, designing a Yagi-Uda antenna, that involves determination of optimal wire-lengths and their spacings, is a highly complex and non-linear engineering problem. In this paper, BBO algorithm is applied to optimize the lengths and spacings of nine-element Yagi-Uda antenna for maximum gain. The results obtained with this optimization technique are compared and the best results are tabulated in the ending sections of the paper.

References
  1. E. E. Altshuler and D. S. Linden. Wire-antenna Designs using Genetic Algorithms. Antennas and Propagation Magazine, IEEE, 39(2):33–43, 1997.
  2. S. Baskar, A. Alphones, P N Suganthan, and J J Liang. Design of Yagi-Uda Antennas using Comprehensive Learning Particle Swarm Optimisation. IEEE, 152(5):340–346, 2005.
  3. JH Bojsen, H. Schjaer-Jacobsen, E. Nilsson, and J. Bach Andersen. Maximum Gain of Yagi–Uda Arrays. Electronics Letters, 7(18):531–532, 1971.
  4. G. J. Burke and A. J. Poggio. Numerical Electromagnetics Code (NEC) method of moments. NOSC Tech. DocLawrence Livermore National Laboratory, Livermore, Calif, USA, 116:1–131, 1981.
  5. C. Chen and D. Cheng. Optimum Element Lengths for Yagi-Uda Arrays. IEEE Transactions on Antennas and Propagation,, 23(1):8–15, 1975.
  6. D. Cheng and C. Chen. Optimum Element Spacings for Yagi-Uda Arrays. IEEE Transactions on Antennas and Propagation,, 21(5):615–623, 1973.
  7. D. K. Cheng. Optimization Techniques for Antenna Arrays. Proceedings of the IEEE, 59(12):1664–1674, 1971.
  8. D. K. Cheng. Gain Optimization for Yagi-Uda Arrays. Antennas and Propagation Magazine, IEEE, 33(3):42–46, 1991.
  9. D. Correia, A. J. M. Soares, and M. A. B. Terada. Optimization of gain, impedance and bandwidth in Yagi-Uda Antennas using Genetic Algorithm. IEEE, 1:41–44, 1999.
  10. H. Ehrenspeck and H. Poehler. A New Method for Obtaining Maximum Gain from Yagi Antennas. IRE Transactions on Antennas and Propagation,, 7(4):379–386, 1959.
  11. R. M. Fishenden and E. R. Wiblin. Design of Yagi Aerials. Proceedings of the IEE-Part III: Radio and Communication Engineering, 96(39):5, 1949.
  12. E. A. Jones andW. T. Joines. Design of Yagi-Uda Antennas using Genetic Algorithms. IEEE Transactions on Antennas and Propagation,, 45(9):1386–1392, 1997.
  13. Y. Kuwahara. Multiobjective Optimization Design of Yagi- Uda Antenna. IEEE Transactions on Antennas and Propagation,, 53(6):1984–1992, 2005.
  14. J. Y. Li. Optimizing Design of Antenna using Differential Evolution. IEEE, 1:1–4, 2007.
  15. R. H. MacArthur and E. O. Wilson. The Theory of Island Biogeography. Princeton Univ Pr, 1967.
  16. M. Rattan, M. S. Patterh, and B. S. Sohi. Optimization of Yagi-Uda Antenna using Simulated Annealing. Journal of Electromagnetic Waves and Applications, 22, 2(3):291– 299, 2008.
  17. D. G. Reid. The Gain of an Idealized Yagi Array. Journal of the Institution of Electrical Engineers-Part IIIA: Radiolocation,, 93(3):564–566, 1946.
  18. L. C. Shen. Directivity and Bandwidth of Single-band and Double-band Yagi Arrays. IEEE Transactions on Antennas and Propagation,, 20(6):778–780, 1972.
  19. D. Simon. Biogeography-based Optimization. IEEE Transactions on Evolutionary Computation,, 12(6):702–713, 2008.
  20. Satvir Singh and Gagan Sachdeva. Mutation Effects on BBO Evolution in Optimizing Yagi-Uda Antenna Design. In IEEE, Emerging Applications of Information Technology (EAIT), 2012 Third International Conference on, pages 47–51. IEEE, 2012.
  21. U. Singh, H. Kumar, and T. S. Kamal. Design of Yagi-Uda Antenna Using Biogeography Based Optimization. IEEE Transactions on Antennas and Propagation,, 58(10):3375– 3379, 2010.
  22. U. Singh, M. Rattan, N. Singh, and M. S. Patterh. Design of a Yagi-Uda Antenna by Simulated Annealing for Gain, Impedance and FBR. IEEE, 1:974–979, 2007.
  23. Shintaro Uda and Yasuto Mushiake. Yagi-Uda Antenna. Maruzen Company, Ltd, 1954.
  24. N. V. Venkatarayalu and T. Ray. Single and Multi-Objective Design of Yagi-Uda Antennas using Computational Intelligence. IEEE, 2:1237–1242, 2003.
  25. N. V. Venkatarayalu and T. Ray. Optimum Design of Yagi- Uda Antennas Using Computational Intelligence. IEEE Transactions on Antennas and Propagation,, 52(7):1811– 1818, 2004.
  26. H. J. Wang, K. F. Man, C. H. Chan, and K. M. Luk. Optimization of Yagi array by Hierarchical Genetic Algorithms. IEEE, 1:91–94, 2003.
  27. H. Yagi. Beam Transmission of Ultra Short Waves. Proceedings of the Institute of Radio Engineers, 16(6):715– 740, 1928. 4
Index Terms

Computer Science
Information Sciences

Keywords

Bio-geography Based Optimization (BBO) Particle Swarm Optimization (PSO) Genetic Algorithm (GA) Yagi-Uda Antenna Antenna Gain Antenna Impedance