CFP last date
20 January 2025
Reseach Article

A Survey of Text Similarity Approaches

by Wael H. Gomaa, Aly A. Fahmy
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 68 - Number 13
Year of Publication: 2013
Authors: Wael H. Gomaa, Aly A. Fahmy
10.5120/11638-7118

Wael H. Gomaa, Aly A. Fahmy . A Survey of Text Similarity Approaches. International Journal of Computer Applications. 68, 13 ( April 2013), 13-18. DOI=10.5120/11638-7118

@article{ 10.5120/11638-7118,
author = { Wael H. Gomaa, Aly A. Fahmy },
title = { A Survey of Text Similarity Approaches },
journal = { International Journal of Computer Applications },
issue_date = { April 2013 },
volume = { 68 },
number = { 13 },
month = { April },
year = { 2013 },
issn = { 0975-8887 },
pages = { 13-18 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume68/number13/11638-7118/ },
doi = { 10.5120/11638-7118 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:29:00.318230+05:30
%A Wael H. Gomaa
%A Aly A. Fahmy
%T A Survey of Text Similarity Approaches
%J International Journal of Computer Applications
%@ 0975-8887
%V 68
%N 13
%P 13-18
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Measuring the similarity between words, sentences, paragraphs and documents is an important component in various tasks such as information retrieval, document clustering, word-sense disambiguation, automatic essay scoring, short answer grading, machine translation and text summarization. This survey discusses the existing works on text similarity through partitioning them into three approaches; String-based, Corpus-based and Knowledge-based similarities. Furthermore, samples of combination between these similarities are presented.

References
  1. Chapman, S. (2006). SimMetrics : a java & c# . net library of similarity metrics, http://sourceforge. net/projects/simmetrics/.
  2. Hall , P. A. V. & Dowling, G. R. (1980) Approximate string matching, Comput. Surveys, 12:381-402.
  3. Peterson, J. L. (1980). Computer programs for detecting and correcting spelling errors, Comm. Assoc. Comput. Mach. , 23:676-687.
  4. Jaro, M. A. (1989). Advances in record linkage methodology as applied to the 1985 census of Tampa Florida, Journal of the American Statistical Society, vol. 84, 406, pp 414-420.
  5. Jaro, M. A. (1995). Probabilistic linkage of large public health data file, Statistics in Medicine 14 (5-7), 491-8.
  6. Winkler W. E. (1990). String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage, Proceedings of the Section on Survey Research Methods, American Statistical Association, 354–359.
  7. Needleman, B. S. & Wunsch, D. C. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins", Journal of Molecular Biology 48(3): 443–53.
  8. Smith, F. T. & Waterman, S. M. (1981). Identification of Common Molecular Subsequences, Journal of Molecular Biology 147: 195–197.
  9. Alberto, B. , Paolo, R. , Eneko A. & Gorka L. (2010). Plagiarism Detection across Distant Language Pairs, In Proceedings of the 23rd International Conference on Computational Linguistics, pages 37–45.
  10. Eugene F. K. (1987). Taxicab Geometry , Dover. ISBN 0-486-25202-7.
  11. Dice, L. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3).
  12. Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547-579.
  13. Lund, K. , Burgess, C. & Atchley, R. A. (1995). Semantic and associative priming in a high-dimensional semantic space. Cognitive Science Proceedings (LEA), 660-665.
  14. Lund, K. & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments & Computers, 28(2),203-208.
  15. Landauer, T. K. & Dumais, S. T. (1997). A solution to plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge", Psychological Review, 104.
  16. Matveeva, I. , Levow, G. , Farahat, A. & Royer, C. (2005). Generalized latent semantic analysis for term representation. In Proc. of RANLP.
  17. Gabrilovich E. & Markovitch, S. (2007). Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis, Proceedings of the 20th International Joint Conference on Artificial Intelligence, pages 6–12.
  18. Martin, P. , Benno, S. & Maik, A. (2008). A Wikipedia-based multilingual retrieval model. Proceedings of the 30th European Conference on IR Research (ECIR), pp. 522-530.
  19. Turney, P. (2001). Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In Proceedings of the Twelfth European Conference on Machine Learning (ECML).
  20. Islam, A. and Inkpen, D. (2008). Semantic text similarity using corpus-based word similarity and string similarity. ACM Trans. Knowl. Discov. Data 2, 2 (Jul. 2008), 1–25.
  21. Islam, A. and Inkpen, D. (2006). Second Order Co-occurrence PMI for Determining the Semantic Similarity of Words, in Proceedings of the International Conference on Language Resources and Evaluation (LREC 2006), Genoa, Italy, pp. 1033–1038.
  22. Cilibrasi, R. L. & Vitanyi, P. M. B. (2007). The Google Similarity Distance, IEEE Trans. Knowledge and Data Engineering, 19:3, 370-383.
  23. Peter, K. (2009). Experiments on the difference between semantic similarity and relatedness. In Proceedings of the 17th Nordic Conference on Computational Linguistics - NODALIDA '09, Odense, Denmark.
  24. Peter, K. (2009). Experiments on the difference between semantic similarity and relatedness. In Proceedings of the 17th Nordic Conference on Computational Linguistics - NODALIDA '09, Odense, Denmark.
  25. Lin, D. (1998b). Extracting Collocations from Text Corpora. In Workshop on Computational Terminology , Montreal, Kanada, 57–63.
  26. Mihalcea, R. , Corley, C. & Strapparava, C. (2006). Corpus based and knowledge-based measures of text semantic similarity. In Proceedings of the American Association for Artificial Intelligence. (Boston, MA).
  27. Miller, G. A. , Beckwith, R. , Fellbaum, C. D. , Gross, D. & Miller, K. (1990). WordNet: An online lexical database. Int. J. Lexicograph. 3, 4, pp. 235–244.
  28. Patwardhan,S. , Banerjee, S. & Pedersen ,T. ( 2003). Using measures of semantic relatedness for word sense disambiguation. In Proceedings of the Fourth International Conference on Intelligent Text Processing and Computational Linguistics, Mexico City , pp. 241–257.
  29. Resnik, R. (1995). Using information content to evaluate semantic similarity. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada.
  30. Jiang, J. & Conrath, D. (1997). Semantic similarity based on corpus statistics and lexical taxonomy. In Proceedings of the International Conference on Research in Computational Linguistics, Taiwan.
  31. Leacock, C. & Chodorow, M. (1998). Combining local context and WordNet sense similarity for word sense identification. In WordNet, An Electronic Lexical Database. The MIT Press.
  32. Wu, Z. & Palmer, M. (1994). Verb semantics and lexical selection. In Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, Las Cruces, New Mexico.
  33. Hirst, G. & St-Onge, D. (1998). Lexical chains as representations of context for the detection and correction of malapropisms. In C. Fellbaum, editor, WordNet: An electronic lexical database , pp 305–332. MIT Press.
  34. Banerjee ,S. & Pedersen, T. (2002). An adapted Lesk algorithm for word sense disambiguation using WordNet. In Proceedings of the Third International Conference on Intelligent Text Processing and Computational Linguistics, , Mexico City, pp 136–145.
  35. Patwardhan, V. ( 2003). Incorporating dictionary and corpus information into a context vector measure of semantic relatedness. Master's thesis, University of Minnesota, Duluth.
  36. Li, Y. , McLean, D. , Bandar, Z. , O'Shea, J. , & Crockett, K. (2006). Sentence similarity based on semantic nets and corpus statistics. IEEE Transactions on Knowledge and Data Engineering, 18(8), 1138–1149.
  37. Islam, A. , & Inkpen, D. (2008). Semantic text similarity using corpus-based word similarity and string similarity. ACM Transactions on Knowledge Discovery from Data, 2(2), 1–25.
  38. Nitish, A. , Kartik, A. & Paul, B. (2012). DERI&UPM: Pushing Corpus Based Relatedness to Similarity: Shared Task System Description. First Joint Conference on Lexical and Computational Semantics (*SEM), pages 643–647, Montreal, Canada, June 7-8, 2012 Association for Computational Linguistics.
  39. Davide, B. , Ronan, T. , Nathalie A. , & Josiane, M. (2012), IRIT: Textual Similarity Combining Conceptual Similarity with an N-Gram Comparison Method. First Joint Conference on Lexical and Computational Semantics (*SEM), pages 552–556, Montreal, Canada, June 7-8, 2012 Association for Computational Linguistics.
  40. Daniel Bar, Chris Biemann, Iryna Gurevych, and Torsten Zesch (2012), UKP: Computing Semantic Textual Similarity by Combining Multiple Content Similarity Measures. First Joint Conference on Lexical and Computational Semantics (*SEM), pages 435–440, Montreal, Canada, June 7-8, 2012 Association for Computational Linguistics.
Index Terms

Computer Science
Information Sciences

Keywords

Text Similarity Semantic Similarity String-Based Similarity Corpus-Based Similarity Knowledge-Based Similarity