CFP last date
20 January 2025
Reseach Article

Rational Trigonometric Interpolation and Constrained Control of the Interpolant Curves

by S S Rana, Mridula Dube, Preeti Tiwari
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 67 - Number 4
Year of Publication: 2013
Authors: S S Rana, Mridula Dube, Preeti Tiwari
10.5120/11387-6671

S S Rana, Mridula Dube, Preeti Tiwari . Rational Trigonometric Interpolation and Constrained Control of the Interpolant Curves. International Journal of Computer Applications. 67, 4 ( April 2013), 40-44. DOI=10.5120/11387-6671

@article{ 10.5120/11387-6671,
author = { S S Rana, Mridula Dube, Preeti Tiwari },
title = { Rational Trigonometric Interpolation and Constrained Control of the Interpolant Curves },
journal = { International Journal of Computer Applications },
issue_date = { April 2013 },
volume = { 67 },
number = { 4 },
month = { April },
year = { 2013 },
issn = { 0975-8887 },
pages = { 40-44 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume67/number4/11387-6671/ },
doi = { 10.5120/11387-6671 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:23:49.383029+05:30
%A S S Rana
%A Mridula Dube
%A Preeti Tiwari
%T Rational Trigonometric Interpolation and Constrained Control of the Interpolant Curves
%J International Journal of Computer Applications
%@ 0975-8887
%V 67
%N 4
%P 40-44
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In the present paper a new method is developed for smooth rational cubic trigonometric interpolation based on values of function which is being interpolated. This rational cubic trigonometric spline is used to constrain the shape of the interpolant such as to force it to be in the given region by selecting suitable parameters. The more important achievement mathematically of this method is that the uniqueness of the interpolating function for the given data would be replaced by uniqueness of the interpolating curve for the given data and selected parameters. Approximation properties have been discussed and confirms that the expected approximation order is O(h2).

References
  1. <ul style="text-align: justify;">
Index Terms

Computer Science
Information Sciences

Keywords

Rational cubic trigonometric spline curve design error estimation constrained interpolation continuity shape parameters[1] Abbas M Majid A. A. Ali J. M. Positivity preserving interpolation of positive data by cubic trigonometric spline Mathematika 2011 27 41-50. [2] Duan Q Wang L Twizell E. H. A new weighted rational cubic interpolation and its approximation Appl. Math. Comput. 2005 168 990-1003. [3] Duan Q Wang L Twizell EH. A new rational interpolation based on function values and constrained control of the interpolant curves Appl. Math. Comput. 2005 161 311-322. [4] Dube M Sharma R. Quadratic NUAT B-spline curves with multiple shape parameters International Journal of Machine Intelligence 2011 3 18-24. [5] Dube M Tiwari P. Convexity preserving rational quadratic trigonometric spline AIP conference proceedings of ICNAAM 2012 1479 995-998. [6] Gregory J. A. Shape preserving spline interpolation Comput. Aided Des. 1986 18 53-57. [7] Han Xi-An Ma-YiChen Huang XiLi. The cubic trigonometric Bézier curve with two shape parameters. Applied Mathematics Letters 2009 22 226-231. [8] Han Xuli. Quadratic trigonometric polynomial curves with a shape parameter Computer Aided Geometric Design 2002 19(7) 503-512. [9] Passow E. Roulier J. A. Monotone and convex spline interpolation SIAM Journal of Num. Analysis 1977 14 904-909. [10] Rana S. S. Dube M Sanyal S. A cubic trigonometric B-spline Investigation in Mathematical Sciences 2011 1 25-31. [11] Sarfraz M. Convexity preserving piecewise rational interpolation for planer curves Bulletin of Korean Mathematical Society 1999 29 193-200. [12]Sarfraz M. Rational spline interpolation preserving the shape of the monotonic data. in: 'Proceeding of the Computer Graphics International' IEEE Computer Society 1997 97 238-244. [13] Schoenberg I. J. On trigonometric spline interpolation J. Math. Mech. 1964 13 795-825. [14]Schultz M. H. Spline Analysis Prentice-Hall:Englewood Cliffs New Jersey 1973. [15] Schumaker L. L. On shape preserving quadratic spline interpolation SIAM J. Numer. Anal. 1983 20 854-864.