CFP last date
20 December 2024
Reseach Article

Time and Frequency Exploration of ECG Signal

by Govind Sharan Yadav, Shubham Yadav, Prachi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 67 - Number 4
Year of Publication: 2013
Authors: Govind Sharan Yadav, Shubham Yadav, Prachi
10.5120/11381-6659

Govind Sharan Yadav, Shubham Yadav, Prachi . Time and Frequency Exploration of ECG Signal. International Journal of Computer Applications. 67, 4 ( April 2013), 5-8. DOI=10.5120/11381-6659

@article{ 10.5120/11381-6659,
author = { Govind Sharan Yadav, Shubham Yadav, Prachi },
title = { Time and Frequency Exploration of ECG Signal },
journal = { International Journal of Computer Applications },
issue_date = { April 2013 },
volume = { 67 },
number = { 4 },
month = { April },
year = { 2013 },
issn = { 0975-8887 },
pages = { 5-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume67/number4/11381-6659/ },
doi = { 10.5120/11381-6659 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:23:45.109484+05:30
%A Govind Sharan Yadav
%A Shubham Yadav
%A Prachi
%T Time and Frequency Exploration of ECG Signal
%J International Journal of Computer Applications
%@ 0975-8887
%V 67
%N 4
%P 5-8
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The time and frequency domain analysis for multicomponent non–stationary signals like Electrocardiogram (ECG) is an important issue in signal processing. Because of its non stationary, multicomponent nature, the use of time and frequency domain analysis can be very useful to identify the exact multicomponent structure of these biological signals. In this paper we have analyzed the ECG signal in time domain and calculated various statistical parameters and the study of different plots were done. Then we headed on the frequency analysis where the power spectral density is calculated using Welch method.

References
  1. P. V. Madeiro, Paulo C. Cortez, Francisco I Oliveira, S. Robson Siqueira "A new approach to QRS segmentation based on waveletbases and adaptive threshold technique". Medical Engineering &Physics 29, 2007, pp 26–37.
  2. O. Faust, R. Acharya, S. M. Krishnan, L. C. Min, "Analysis of cardiacsignal using spatial filling index and time-frequency domain" BioMedical Engineering OnLine, 2004.
  3. N. Jafarnia-Dabanlooa, D. C. McLernona, H. Zhangb, A. Ayatollahic, V. Johari-Majd "A modified Zeeman model for producing HRV signals and its application to ECG signal generation", Journal of Theoretical Biology 244, 2007, pp 180–189.
  4. V. Pichot, J. M. Gaspoz, S. Molliex, A. Antoniadis, T. Busso, F. Roche F. Costes, L. Quintin, J. R. Lacor, J. Barthelemy, "Wavelet transform to quantify heart rate variability and to assess its instantaneous changes" J. Appl. Physiol. 86, pp 1081–1091, 1999.
  5. N. Y. Belova, S. V. Mihaylov, G. Piryova, "Wavelet transform: A better approach for the evaluation of instantaneous changes in heart rate variability", Autonomic Neuroscience: Basic and Clinical 131, pp 107-122, 2007.
  6. D. E. Vigo, S. M. Guinjoan, M. Scaramal, L. N; Siri, D. P. Cardinali "Wavelet transform shows age-related changes of heart rate variability within independent frequency components", Autonomic Neuroscience Basic and Clinical 123, 2005, pp 94 – 100
  7. E. Toledo, O. Gurevitz, H. Hod, M. Eldar, S; Akselro, " Wavelet analysis of instantaneous heart rate: a study of autonomic control during thrombolysis". Am J Physiol Regulatory Integrative Comp Physiol 284, 2003, pp 1079-1091.
  8. H. Burri, P. Chevalier, M. Arzi, P. Rubel, G. Kirkorian, P. Touboul "Wavelet transform for analysis of heart rate variability preceding ventricular arrhythmias in patients with ischemic heart disease" International Journal of Cardiology 109, 2003, pp 101 – 107.
  9. G. Kheder, R. Taleb, A. Kachouri, M. BenMassoued, M. Samet "Feature extraction by wavelet transforms to analyze the heart rate variability during two meditation technique", Chapter Book, Springer-Verlag2008.
  10. N. Y. Belova, S. V. Mihaylov, G. Piryova, "Wavelet transform: A better approach for the evaluation of instantaneous changes in heart rate variability", Autonomic Neuroscience: Basic and Clinical 131, pp 107-122, 2007.
  11. D. E. Vigo, S. M. Guinjoan, M. Scaramal, L. N; Siri, D. P. Cardinali "Wavelet transform shows age-related changes of heart rate variability within independent frequency components", Autonomic Neuroscience Basic and Clinical 123, 2005, pp 94 – 100.
  12. E. Toledo, O. Gurevitz, H. Hod, M. Eldar, S; Akselro, " Wavelet analysis of instantaneous heart rate: a study of autonomic control during thrombolysis". Am J Physiol Regulatory Integrative Comp Physiol 284, 2003, pp 1079-1091.
  13. H. Burri, P. Chevalier, M. Arzi, P. Rubel, G. Kirkorian, P. Touboul "Wavelet transform for analysis of heart rate variability preceding ventricular arrhythmias in patients with ischemic heart disease" International Journal of Cardiology 109, 2003, pp 101 – 107.
  14. G. Kheder, R. Taleb, A. Kachouri, M. BenMassoued, M. Samet "Feature extraction by wavelet transforms to analyze the heart rate variability during two meditation technique", Chapter Book, Springer-Verlag2008.
  15. N. Jafarnia-Dabanlooa, D. C. McLernona, H. Zhangb, A. Ayatollahic, V. Johari-Majd "A modified Zeeman model for producing HRV signals and its application to ECG signal generation", Journal of Theoretical Biology 244, 2007, pp 180–189.
Index Terms

Computer Science
Information Sciences

Keywords

FFT ECG signal histogram MIT-BIH RR interval