CFP last date
20 December 2024
Reseach Article

Information Gain based Methodology to Predict the Effect of Conformational Change on the Existence of f10 Epitope on the Surface of Human H5N1 Virus Hemagglutinin Protein

by Ahmed Sharaf–eldin, Aliaa Youssif, Samar Kassim, Doaa Khalil
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 67 - Number 2
Year of Publication: 2013
Authors: Ahmed Sharaf–eldin, Aliaa Youssif, Samar Kassim, Doaa Khalil
10.5120/11370-6637

Ahmed Sharaf–eldin, Aliaa Youssif, Samar Kassim, Doaa Khalil . Information Gain based Methodology to Predict the Effect of Conformational Change on the Existence of f10 Epitope on the Surface of Human H5N1 Virus Hemagglutinin Protein. International Journal of Computer Applications. 67, 2 ( April 2013), 34-41. DOI=10.5120/11370-6637

@article{ 10.5120/11370-6637,
author = { Ahmed Sharaf–eldin, Aliaa Youssif, Samar Kassim, Doaa Khalil },
title = { Information Gain based Methodology to Predict the Effect of Conformational Change on the Existence of f10 Epitope on the Surface of Human H5N1 Virus Hemagglutinin Protein },
journal = { International Journal of Computer Applications },
issue_date = { April 2013 },
volume = { 67 },
number = { 2 },
month = { April },
year = { 2013 },
issn = { 0975-8887 },
pages = { 34-41 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume67/number2/11370-6637/ },
doi = { 10.5120/11370-6637 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:23:38.846613+05:30
%A Ahmed Sharaf–eldin
%A Aliaa Youssif
%A Samar Kassim
%A Doaa Khalil
%T Information Gain based Methodology to Predict the Effect of Conformational Change on the Existence of f10 Epitope on the Surface of Human H5N1 Virus Hemagglutinin Protein
%J International Journal of Computer Applications
%@ 0975-8887
%V 67
%N 2
%P 34-41
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Bio-informatics tools are widely used to obtain results that are hard to be obtained by physical experiments alone. In this study, we predicted the 3D structure of all human H5N1 hemagglutinin proteins with estimated precision 100%. We tested the existence of the F10 antibody epitope at their surfaces. The information gain (IG) is applied to calculate the degree of association between each position mutation and the absence of F10 antibody epitope on the protein surface. We identified amino acid positions that are responsible for the protein escape from neutralization by f10 antibody.

References
  1. A. Ghanem, D. Mayer, G. Chase, W. Tegge,R. Frank, G. Kochs, A. Garcia-Sastre, and M. Schwemmle, "Peptide- mediated interference with in?uenza A virus polymerase", J. Virol. , vol. 81, pp. 7801–7804, 2007.
  2. E. De Clercq, "Antiviral agents active against in?uenza A viruses", Nat. Rev. Drug Discov. , vol. 5, pp. 1015–1025, 2006.
  3. J. H. Beigel, J. Farrar, A. M. Han, F. G. Hayden, R. Hyer, M. D. deJong, S. Lochindarat, T. K. Nguyen,T. H. Nguyen, T. H. Tran, A. Nicoll, S. Touch, and K. Y. Yuen, "Avian in?uenza A (H5N1) infection in humans", N. Engl. J. Med. , vol. 353, pp. 1374–1385, 2005.
  4. J. B. Plotkin, J. Dushoff, and S. A. Levin, "Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus", Proc Natl Acad Sci U S A. , vol. 99, pp. 6263-8, 2002.
  5. E. C. Claas, A. D. Osterhaus, R. van Beek, J. C. De Jong, G. F. Rimmelzwaan, D. A. Senne, S. Krauss, K. F. Shortridge, and R. G. Webster, "Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus", Lancet, vol. 351, pp. 472-7, 1998.
  6. "Evolution of H5N1 avian influenza viruses in Asia", Emerg Infect Dis. , vol. 11, pp. 1515-21, 2005.
  7. J. P. Jenuth, "The NCBI. Publicly available tools and resources on the Web", Methods Mol Biol. , vol. 132, pp. 301-12, 2000.
  8. R. M. Bennett-Lovsey, A. D. Herbert, M. J. E. Sternberg, and L. A. Kelley, "Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre",Proteins, Vol. 70, pp. 611–625, 2008.
  9. A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, "SCOP: a structural classi?cation of proteins database for the investigation of sequences and structures", J. Mol. Biol. , vol. 247, pp. 536–540, 1995.
  10. H. M. Berman et al, "The protein data bank", Nucleic Acids Res. , vol. 28, pp. 235–242, 2000.
  11. Surendra. s. negi and Werner Braun, "Automated Detection of conformational epitopes Using phage Display peptide sequences", Bioinformatics and Biology Insights, vol. 3, pp. 71–81 , 2009.
  12. R. Fraczkiewicz and W. Braun, "Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules", J. Comp. Chem. , vol. 19, pp. 319,1998.
  13. SS. Negi and W. Braun, "Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces", J. Mol. Model, vol. 13, pp. 1157–67, 2007.
  14. SS. Negi, CH. Schein, N. Oezguen, TD. Power, and W. Braun, "InterProSurf: a web server for predicting interacting sites on protein surfaces", Bioinformatics, vol. 23, pp. 3397–9, 2007.
  15. M. Venkatarajan and W. Braun, "New quantitative descriptors of amino acids based on multidimensional scaling of a large number of physical–chemical properties", J. Mol. Model, vol. 7, pp. 445–53, 2001.
  16. VS. Mathura, CH. Schein, W. Braun, "Identifying property based sequence motifs in protein families and superfamilies: application to DNase-1 related endonucleases", Bioinformatics, vol. 19, pp. 1381–90, 2003.
  17. C. Damian, Ekiert, Gira Bhabha, Marc-André Elsliger, Robert H. E. Friesen, Mandy Jongeneelen, Mark Throsby, Jaap Goudsmit, and Ian A. Wilson, "Antibody recognition of a highly conserved influenza virus epitope: implications for universal prevention and therapy", Science, vol. 324, pp. 246–251, 2009.
  18. Jianhua Sui et al, "Structural and Functional Bases for Broad-Spectrum Neutralization of Avian and Human Influenza A Viruses", Nat. Struct. Mol. Biol. , vol. 16, pp. 265–273, 2009.
  19. I. H. W. a. E. Frank, "Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations", Morgan Kaufmann, 2000.
  20. Ambrish Roy, Alper Kucukural, Yang Zhang. "I-TASSER: a unified platform for automated protein structure and function prediction", Nature Protocols, vol. 5, pp. 725-738, 2010.
  21. Halperin I, Ma B, Wolfson H, Nussinov R, "Principles of docking: An overview of search algorithms and a guide to scoring functions", Proteins, vol. 47, pp. 409–443,2002.
  22. Camacho C. J, Gatchell D. W, Kimura S. R, Vajda S, "Scoring docked conformations generated by rigid-body protein-protein docking", Proteins, vol. 40, pp. 525–537,2000.
  23. Cheng T. M, Blundell T. L, Fernandez-Recio J, "pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking", Proteins, vol. 68, pp. 503–515,2007.
  24. Chen R, Li L, Weng Z, "ZDOCK: an initial-stage protein-docking algorithm". Proteins,vol. 52, pp. 80–87,2003.
  25. Gray J. J, Moughon S. E, Kortemme T, Schueler-Furman O, Misura K. M, Morozov A. V, Baker D, "Protein-protein docking predictions for the CAPRI experiment". Proteins, vol. 52, pp. 118–122, 2003. .
  26. Lyskov S, Gray J. J, "The RosettaDock server for local protein-protein docking", Nucleic Acids Res, vol. 36, pp. W233–W238, 2008.
  27. Dominguez C, Boelens R, Bonvin A. M, "HADDOCK: a protein-protein docking approach based on biochemical or biophysical information", J. Am. Chem. Soc,vol. 125, pp. 1731–1737,2003.
  28. PIGS, Prediction of ImmunoGlobulin Structure. Available online: http://www. biocomputing. it/pigs .
  29. Sivasubramanian A, Sircar A, Chaudhury S, Gray J. J, "Toward high-resolution homology modeling of antibody FV regions and application to antibody-antigen docking", Proteins, vol. 74, pp. 497–514, 2009.
  30. I. K. McDonald, J. M. Thornton, "Satisfying hydrogen bonding potential in proteins", J. Mol. Biol, vol. 238, pp. 777–793, 1994.
  31. A. C. Wallace, R. A. Laskowski, J. M. Thornton, "LIGPLOT: a program to generate schematic diagrams of protein-ligand interac-tions", Protein Eng, vol. 8 ,pp. 127–134, 1995 .
  32. Srivatsan Raman et al, "Structure prediction for CASP8 with all-atom refinement using Rosetta", Proteins, vol. 77, pp. 89-99, 2009.
Index Terms

Computer Science
Information Sciences

Keywords

Antibodies H5N1 Hemagglutinin Influenza virus Mutation