CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

A Comparative Study of Three Intelligent Techniques for Malaria in Africa Continent

by Khalda F. Ali, Amir Mohamed Elamir, Riza.m. Suliman
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 67 - Number 2
Year of Publication: 2013
Authors: Khalda F. Ali, Amir Mohamed Elamir, Riza.m. Suliman
10.5120/11364-6600

Khalda F. Ali, Amir Mohamed Elamir, Riza.m. Suliman . A Comparative Study of Three Intelligent Techniques for Malaria in Africa Continent. International Journal of Computer Applications. 67, 2 ( April 2013), 1-5. DOI=10.5120/11364-6600

@article{ 10.5120/11364-6600,
author = { Khalda F. Ali, Amir Mohamed Elamir, Riza.m. Suliman },
title = { A Comparative Study of Three Intelligent Techniques for Malaria in Africa Continent },
journal = { International Journal of Computer Applications },
issue_date = { April 2013 },
volume = { 67 },
number = { 2 },
month = { April },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume67/number2/11364-6600/ },
doi = { 10.5120/11364-6600 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:23:34.633297+05:30
%A Khalda F. Ali
%A Amir Mohamed Elamir
%A Riza.m. Suliman
%T A Comparative Study of Three Intelligent Techniques for Malaria in Africa Continent
%J International Journal of Computer Applications
%@ 0975-8887
%V 67
%N 2
%P 1-5
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Diseases are endemic in the Africa continent and one of the problems that affect economic development, malaria and fever is considered one of the most endemic diseases in eastern and central Africa, where Sudan is considered one of the countries in this region where the disease parasite. The proportion of the common symptoms of several types of fevers in this geographical area of Africa it is difficult in many cases determine the malaria fever for other fevers and thus may lead to give the patient treatment is not correct. Through this paper we compare three techniques to help in the diagnosis of malaria fever and other fevers thus giving the correct treatment and to fight the disease and minimize its spread. These techniques which will be used are neural network, genetic algorithm and fuzzy logic.

References
  1. Snow RW, Gouws E, Omumbo JA, Rapuoda BA, Craig MH, Tanser FC, le Sueur D, Ouma J: Models to predict the intensity of Plasmodium falciparum transmission: applications to the burden of disease in Kenya. Trans Roy Soc Trop Med Hyg 1998 , 92:601-606. Kleinschmidt I, Omumbo JA, Briët O, van de Giesen N, Sogoba N, Mensah N, Windmeijer P, Moussa M, Teuscher T: An empirical malaria distribution map for West Africa.
  2. Trop Med Int Health 2001 , 6:779-786. Briët OJT, Gunawardena DM, van der Hoek W, Amerasinghe FP: Sri Lanka malaria maps.
  3. Malar J 2003 , 2:22-32Hay SI: An overview of remote sensing and geodesy for epidemiology and public health application.
  4. Adv Parasitol 2000 , 47:1-35Craig MH, Snow RW, le Sueur D: A climate-based distribution model of malaria transmission in sub-Saharan Africa.
  5. Parasitol Today 1999 , 15:105-111. PAHO: Status of malaria programmes in the Americas (based on 2002 data). Report of the 44th directing council, 55th session of the regional committee.
  6. Pan American Health Organization (PAHO)/World Health Organization (WHO): Washington D. C 2003.
  7. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW: The global distribution and population at risk of malaria: past, present and future.
  8. Lancet Infect Dis 2004 , 4:327-336. World Health Organization: The Africa Malaria Report 2003.
  9. World Health Organization/United Nations Children's Fund: Geneva/New York 2003 , 120.
  10. World Health Organisation: Rolling back malaria. The world health report 1999: making a difference.
  11. World Health Organization: Geneva 1999 , 49-63.
  12. Snow RW, Craig MH, Deichmann U, Marsh K: Estimating mortality an disability due to malaria among Africa's non-pregnant population.
  13. Bull World Health Organ 1999 , 77:624-640Snow RW, Craig MH, Newton CRJC, Steketee RW: The public health burden of Plasmodium falciparum malaria in Africa: deriving the numbers. Working Paper 11, Disease Control Priorities Project.
  14. Fogarty International Center, National Institutes of Health: Bethseda, Maryland 2003.
  15. Snow RW, Omumbo JA: Malaria mortality in sub-Saharan Africa (in press).
  16. In Disease and mortality in sub-Saharan Africa (Edited by: Jamison D, Feacham R, Makgoba W, Hofman K, Rogo K). Oxford University Press & World Bank 2004 , in press.
  17. Omumbo JA, Ouma J, Rapuoda B, Craig MH, le Sueur D, Snow RW: Mapping malaria transmission intensity using geographical information systems (GIS): an example from Kenya.
  18. Ann Trop Med Parasitol 1998 , 92:7-21MARA/ARMA: Towards an atlas of malaria risk in Africa. Fist technical report of the MARA/ARMA collaboration. MARA/ARMA. Durban 1998.
  19. Directorate of Overseas Surveys: 1:50,000 topographical maps. Series Y731.
  20. Survey of Kenya: Nairobi, Kenya 1971.
  21. Central Bureau of Statistics: 1999 population and housing census: counting our people for development. Volume 1. 1 Population distribution by administrative and urban centres. Ministry of Finance & Planning, Nairobi, Kenya. 2001.
  22. GDE Systems: Populated places: GeoName Digital Gazetteer v. 1 (CD-ROM).
  23. Geographic Information Department (MZ 1211-M), GDE Systems Inc. , P. O. Box 509009, San Diego, California 1995.
  24. World Resources Institute: Topographic data: Africa Data Sampler (CD-ROM).
  25. World Resources Institute, USA 1995.
  26. SALB: Second Administrative Level Boundaries (SALB) Project overviews: concepts, progress and future. [http://www3. who. int/whosis/gis/salb/salb%20po. htm] webcite 2004.
  27. Snow RW, Gilles HM: The epidemiology of malaria.
  28. In Bruce Chwatt's Essential Malariology (Edited by: Warrell D, Gilles H). Arnold Publishers: London 2002 , 85-106.
  29. Service M: Mosquito (Diptera: Culicidae) dispersal – the long and short of it.
  30. J Med Entomol 1997 , 34:579-588. Cohen J: A co-efficient of agreement for nominal scale.
  31. Educ Psychol Measurements 1960 , 20:37-46.
  32. Landis J, Koch G: The measurement of observer agreement for categorical data.
  33. Biometrics 1977 , 33:159-174.
  34. Metselaar D, Van Theil P: Classification of malaria.
  35. Trop Geog Med 1959 , 11:157-161.
  36. Small J, Goetz SJ, Hay SI: Climatic suitability for malaria transmission in Africa, 1911–1995.
  37. Levine RS, Peterson AT, Benedict MQ: Geographic and ecologic distributions of the Anopheles Gambiea complex predicted using a genetic algorithm.
  38. Am J Trop Med Hyg 2004 , 70:105-109. Gillies MT, De Meillon B: The Anophelinae of Africa South of the Sahara. Publication no. 54. Johannesburg, South Africa. South African Institute of Medical Research; 1968.
  39. Gillies MT, Coetzee M: Supplement to the Anophelinae of Africa South of the Sahara. Publication no. 55. Johannesburg, South Africa. South African Institute of Medical Research; 1987.
  40. Lindsay SW, Parson L, Thomas CJ: Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data.
  41. Proc R Soc Lond B Biol Sci 1998 , 265:847-854.
  42. Coetzee M, Craig M, Le Sueur D: Distribution of African malaria mosquitoes belonging to the Anopheles gambiae Complex.
  43. Parasitol Today 2000 , 16:74-77.
  44. Proc Natl Acad USA 2003 , 100:15341-15345
  45. Greenwood B, Mutabingwa T: Malaria in 2002. Nature 2002 , 415:670-672.
  46. Alexander N, Schellenberg D, Ngasala B, Petzold M, Drakeley C, Sutherland C: Assessing agreement between malaria slide density readings.
  47. Malar J 2010 , 9:4. Bowers KM, Bell D, Chiodini PL, Barnwell J, Incardona S, Yen S, Luchavez J, Watt H: Inter-rater reliability of malaria parasite counts and comparison of methods. Malar J 2009 , 8:267
  48. Coleman RE, Maneechai N, Rachaphaew N, Kumpitak C, Miller RS, Soyseng V, Thimasarn K, Sattabongkot J: Comparison of field and expert laboratory microscopy for active surveillance for asymptomatic Plasmodium falciparum and Plasmodium vivax in western Thailand.
  49. Am J Trop Med Hyg 2002 , 67:141-144. Khairnar K, Martin D, Lau R, Ralevski F, Pillai DR: Multiplex real-time quantitative PCR, microscopy and rapid diagnostic immuno-chromatographic tests for the detection of Plasmodium spp: performance, limit of detection analysis and quality assurance.
  50. Malar J 2009 , 8:284.
  51. Shokoples SE, Ndao M, Kowalewska-Grochowska K, Yanow SK: Multiplexed real-time PCR assay for discrimination of Plasmodium species with improved sensitivity for mixed infections. J Clin Microbiol 2009 , 47:975-980
  52. Haykin S, Neural networks: A comprehensive foundation. , New Jersey: Prentice Hall, 1998.
  53. Goldberg DE, Genetic algorithm in search, optimization, and machine learning, Addison-Wesley, Reading, MA, 1989.
Index Terms

Computer Science
Information Sciences

Keywords

Neural networks genetic algorithm fuzzy logic endemic diseases parasite asymptomatic malaria epidemiological