We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

A Study of Efficiency Dependence on Alloy Composition in an AlxGa1-xAs / AlxIn1-xAs Heterojunction Solar Cell: An Ultra Thin Film Approach

by K. A. S. M. Ehteshamul Haque, Tahmid Nahian Bin Quddus, Mohammad Tanvirul Ferdaous
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 66 - Number 4
Year of Publication: 2013
Authors: K. A. S. M. Ehteshamul Haque, Tahmid Nahian Bin Quddus, Mohammad Tanvirul Ferdaous
10.5120/11072-5993

K. A. S. M. Ehteshamul Haque, Tahmid Nahian Bin Quddus, Mohammad Tanvirul Ferdaous . A Study of Efficiency Dependence on Alloy Composition in an AlxGa1-xAs / AlxIn1-xAs Heterojunction Solar Cell: An Ultra Thin Film Approach. International Journal of Computer Applications. 66, 4 ( March 2013), 23-29. DOI=10.5120/11072-5993

@article{ 10.5120/11072-5993,
author = { K. A. S. M. Ehteshamul Haque, Tahmid Nahian Bin Quddus, Mohammad Tanvirul Ferdaous },
title = { A Study of Efficiency Dependence on Alloy Composition in an AlxGa1-xAs / AlxIn1-xAs Heterojunction Solar Cell: An Ultra Thin Film Approach },
journal = { International Journal of Computer Applications },
issue_date = { March 2013 },
volume = { 66 },
number = { 4 },
month = { March },
year = { 2013 },
issn = { 0975-8887 },
pages = { 23-29 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume66/number4/11072-5993/ },
doi = { 10.5120/11072-5993 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:21:27.205852+05:30
%A K. A. S. M. Ehteshamul Haque
%A Tahmid Nahian Bin Quddus
%A Mohammad Tanvirul Ferdaous
%T A Study of Efficiency Dependence on Alloy Composition in an AlxGa1-xAs / AlxIn1-xAs Heterojunction Solar Cell: An Ultra Thin Film Approach
%J International Journal of Computer Applications
%@ 0975-8887
%V 66
%N 4
%P 23-29
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Variation in energy conversion efficiency in an AlxGa1-xAs/ AlxIn1-xAs heterojunction solar cell has been studied by changing the alloy composition at different layers of the device. Simulations were done using Adept 1D software for different combinations of alloy composition of the layer materials, and light J-V characteristics curve was obtained for each combination. Energy conversion efficiency was calculated from light J-V characteristics curve (Under AM1. 5G). The study was conducted by analysing the efficiency values resulting for different combinations. The best results were obtained for x= 0. 9, 0. 48 and 0. 9 in the top, middle and bottom layers, respectively. For optimized values of layer thickness and doping concentration at different layers, this particular combination of alloy composition yielded an efficiency of 21. 39% (under 1 sun). However, the device had two major drawbacks- lattice mismatch between adjacent layers, and high fabrication cost. These two issues have been taken care of later in the paper, and two low-cost, ultra-thin film solar cell designs were proposed.

References
  1. Ioffe Physical Technical Institute. 2005. NSM Archive - Physical Properties of Semiconductors. http://www. ioffe. ru/SVA/ NSM/Semicond/
  2. ECEn IMMERSE Web Team, Brigham Young University. 2009. Energy Gap in III-V Ternary Semiconductors. http://www. cleanroom. byu. edu /EW_ternary. phtml
  3. N. Bouarissa and M. Boucenna,. 2009. Band parameters for AlAs, InAs and their ternary mixed crystals. Physica Scripta, vol. 79, pp. 0157011-0157017.
  4. J. L. Gray and Michael McLennan. 2008. Adept. http://nanohub. org/resources/adept/
  5. M. A. Green. 1981. Solar cell fill factors: General graph and empirical expressions. Solid-State Electronics, vol. 24, pp. 788-789.
  6. Harish Palaniappan. 2012. Solar Cells. http://solar_cells. tripod. com/notes_sel_1. html
  7. U. S. Department of Energy. 2011. Energy Basics. http://www. eere. energy. gov/basics/renewable_energy/pv_cell_structures. html
  8. M. S. Leite, R. L. Woo, W. D. Hong, D. C. Law and H. A. Atwater. 2011. Wide-band-gap InAlAs solar cell for an alternative multijunction approach. Applied Physics Letters, vol. 98, pp. 0935021-0935023.
  9. T. Tiedje, E. Yablonovitch, G. D. Cody and B. G. Brooks. 1984. Limiting efficiency of silicon solar cells. IEEE Transactions on Electron Devices, vol. 31, pp. 711-716.
  10. P. K. Nayak, G. G. Belmonte, A. Kahn, J. Bisquert and D. Cahen. 2012. Photovoltaic ef?ciency limits and material disorder. Energy and Environmental Science, vol. 5, pp. 6022-6039.
  11. K. Van Nieuwenhuysen, F. Duerinckx, I. Kuzma, D. van Gestel, G. Beaucarne and J. Poortmans. 2006. Progress in epitaxial deposition on low-cost substrates for thin-?lm crystalline silicon solar cells at IMEC. Journal of Crystal Growth, vol. 287, pp. 438-441.
  12. B. G. Streetman and S. K. Banerjee. 2006. Solid State Electronic Devices (6th Ed. ). Prentice-Hall Inc. , New Jersey, USA.
  13. J. W. Matthews and A. E. Blakeslee. 1974. Defects in epitaxial multilayers: I. Misfit dislocations. Journal of Crystal Growth, vol. 27, pp. 118-125.
  14. H. J. Scheel and P. Capper. Crystal Growth Technology: From Fundamentals and Simulation to Large-scale Production (1st Ed. ). 2008. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
  15. M. S. Hossain, N. Amin, M. A. Matin, M. M. Aliyu, T. Razykov and K. Sopian. 2011. A numerical study on the prospects of high efficiency ultra thin ZnxCd1-xS/ CdTe solar cell. Chalcogenide Letters, vol. 8, pp. 263-272.
  16. A. W. Bett, F. Dimroth, G. Stollwerck and O. V. Sulima. 1999. III-V compounds for solar cell applications. Applied Physics A, vol. 69, pp. 119-129.
Index Terms

Computer Science
Information Sciences

Keywords

Ternary alloy ultra-thin film solar cell alloy composition heterojunction efficiency