CFP last date
20 January 2025
Reseach Article

A Computer-based Sound Recognition System for the Diagnosis of Pulmonary Disorders

by A. E. El-alfi, A. F. Elgamal, R. M. Ghoniem
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 66 - Number 17
Year of Publication: 2013
Authors: A. E. El-alfi, A. F. Elgamal, R. M. Ghoniem
10.5120/11176-6331

A. E. El-alfi, A. F. Elgamal, R. M. Ghoniem . A Computer-based Sound Recognition System for the Diagnosis of Pulmonary Disorders. International Journal of Computer Applications. 66, 17 ( March 2013), 22-30. DOI=10.5120/11176-6331

@article{ 10.5120/11176-6331,
author = { A. E. El-alfi, A. F. Elgamal, R. M. Ghoniem },
title = { A Computer-based Sound Recognition System for the Diagnosis of Pulmonary Disorders },
journal = { International Journal of Computer Applications },
issue_date = { March 2013 },
volume = { 66 },
number = { 17 },
month = { March },
year = { 2013 },
issn = { 0975-8887 },
pages = { 22-30 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume66/number17/11176-6331/ },
doi = { 10.5120/11176-6331 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:22:40.307141+05:30
%A A. E. El-alfi
%A A. F. Elgamal
%A R. M. Ghoniem
%T A Computer-based Sound Recognition System for the Diagnosis of Pulmonary Disorders
%J International Journal of Computer Applications
%@ 0975-8887
%V 66
%N 17
%P 22-30
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents a computer-based sound recognition system for diagnosis of pulmonary disorders based on the interpretation of the lung sound signals (LSS). We propose a novel method of analysis of LSS using the Mel-frequency cepstral coefficients, the spectral and temporal parameters estimated from the frequency subbands of the discrete wavelet transform. A Linde Buzo Gray (LBG) clustering neural network model is developed for classifying the LSS to one of the six categories: normal, wheeze, crackle, squawk, stridor, or rhonchus. Experimental results demonstrate the effectiveness of the proposed system in detecting pulmonary disorders.

References
  1. Sovijarvi, A. R. A. , Vanderschoot, J. , and Earis, J. E. 2000. Standardization of computerised respiratory sound analysis. European Respiratory Review, 10 (77), 585.
  2. Bahoura, M. 2009. Pattern recognition methods applied to respiratory sounds classification to normal and wheeze classes. Computers in Biology and Medicine, 39 (9). 824–843.
  3. Kandaswamy, A. , Kumar C. S. , Ramanathan, Rm. Pl. , Jayaraman, S. , and Malmurugan, N. 2004. Neural classification of lung sounds using wavelet coefficients. Computers in Biology and Medicine, 34 (6), 523–537.
  4. Sovijärvi, A. R. A, Dalmasso, F. , Vanderschoot, J. , Malmberg, L. P. , Righini, G. , and Stoneman, S. A. T. 2000. Definition of terms for applications of respiratory sounds. Eur Respir Rev, 10 (77), 597–610.
  5. Sovijarvi, A. R. A. , Malmberg, L. P. , Charbonneau, G. , and Vanderschoot, J. 2000. Characteristics of breath sounds and adventitious respiratory sounds. European Respiratory Review, 10 (77), 591–596.
  6. Mehta, A. C. , Gat, M. , Mann, S. , and Madison, J. M. 2010. Accuracy of gray-scale coding in lung sound mapping. Computerized Medical Imaging and Graphics, 34 (5), 362–369.
  7. Dalmay, F. , Antonini, M. T. , Marquet, P. , and Menier, R. 1995. Acoustic properties of the normal chest. European Respiratory Journal, 8 (10), 1761–1769.
  8. Sankur, B. , Kahya, Y. P. , Guler, E. C. , and Engin, T. 1994. Comparison of AR-based algorithms for respiratory sound classification. Computers in Biology and Medicine, 24 (1), 67–76.
  9. Guler, E. , Sankur, B. , Kahya, Y. , and Raudys, S. 2005. Two-stage classification of respiratory sound patterns. Computers in Biology and Medicine, 35 (1), 67–83.
  10. Bahoura, M. , and Pelletier, C. 2004. Respiratory sounds classification using cepstral analysis and Gaussian mixture models. In 26th Annual Conference of the IEEE EMBS, San Francisco, CA, September 1–5, pp. 9–12.
  11. Taplidou, S. A. , Hadjileontiadis, L. J. , Kittsas, I. K. , and Panoulas, K. I. 2004. On applying continuous wavelet transform in wheeze nalysis. In Proceedings of the 26th International Conference of the IEEE EMBS, San Francisco, CA, USA, pp. 3832–3835.
  12. Polat, H. , and Guler, I. 2004. A simple computer-based measurement and analysis system of pulmonary auscultation sounds. J. Med. Syst. 28 (6), 665–672.
  13. Taplidou, S. A. , and Hadjileontiadis, L. J. 2007. Nonlinear analysis of wheezes using wavelet bicoherence. Computers in Biology and Medicine, 37 (4), 563–570.
  14. Waitman, L. R. , Clarkson, K. P. , Barwise, J. A. , and King, P. H. 2000. Representation and classification of breath sounds recorded in an intensive care setting using neural networks. Journal of Clinical Monitoring and Computing, 16 (2), 95–105.
  15. Lin, B. S. , Wu, H. D. , Chong, F. C. , and Chen, S. J. 2006. Wheeze recognition based on 2D bilateral filtering of spectrogram. Biomedical Engineering Applications, Basis & Communications, 18 (3), 128–137.
  16. Donoho, D. L. , and Johnstone, I. M. 1995. Adapting to unknown smoothness via wavelet shrinkage, J. Am. Stat. Assoc. , 90 (432), 1200–1224.
  17. Calvo de Lara, J. R. 2005. A method of automatic speaker recognition using cepstral features and vectorial quantization. Springer-Verlag Berlin Heidelberg, 3773, 146-153.
  18. Jung, S. , and Ghaboussi, J. 2006. Characterizing rate-dependent material behaviors in self-learning simulation. Computer Methods in Applied Mechanics and Engineering, 196 (1–3), 608–619.
  19. Riedmiller, M. , and Braun, H. , 1993. A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA.
  20. The R. A. L. E. lung sound 3. 0. www. rale. ca, 2003.
Index Terms

Computer Science
Information Sciences

Keywords

Lung Sound Signals (LSS) Discrete Wavelet Transform (DWT) Mel-Frequency Cepstral Coefficients (MFCC) Spectral and temporal parameters Linde Buzo Gray (LBG) Multi-Layer Perception (MLP) Network