We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Call for Paper
December Edition
IJCA solicits high quality original research papers for the upcoming December edition of the journal. The last date of research paper submission is 20 November 2024

Submit your paper
Know more
Reseach Article

Coupled Fixed Point Theorem in Intuitionistic Fuzzy Metric Space using E. A. Property

by Ramesh Kumar Vats, Sanjay Kumar, Vikram Singh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 65 - Number 3
Year of Publication: 2013
Authors: Ramesh Kumar Vats, Sanjay Kumar, Vikram Singh
10.5120/10901-5827

Ramesh Kumar Vats, Sanjay Kumar, Vikram Singh . Coupled Fixed Point Theorem in Intuitionistic Fuzzy Metric Space using E. A. Property. International Journal of Computer Applications. 65, 3 ( March 2013), 1-5. DOI=10.5120/10901-5827

@article{ 10.5120/10901-5827,
author = { Ramesh Kumar Vats, Sanjay Kumar, Vikram Singh },
title = { Coupled Fixed Point Theorem in Intuitionistic Fuzzy Metric Space using E. A. Property },
journal = { International Journal of Computer Applications },
issue_date = { March 2013 },
volume = { 65 },
number = { 3 },
month = { March },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume65/number3/10901-5827/ },
doi = { 10.5120/10901-5827 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:17:39.739593+05:30
%A Ramesh Kumar Vats
%A Sanjay Kumar
%A Vikram Singh
%T Coupled Fixed Point Theorem in Intuitionistic Fuzzy Metric Space using E. A. Property
%J International Journal of Computer Applications
%@ 0975-8887
%V 65
%N 3
%P 1-5
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The present study introduce the notion of weak compatibility and E. A. property for mixed g-monotone mappings in setting of intuitionistic fuzzy metric space and utilize these perceptions to prove a coupled fixed point theorem for such nonlinear contractive mappings. More to the point together with several recent developments, the efforts of this work can be used to explore a large category of problems. An example is also established for the support of our result.

References
  1. Aamri, M. , El Moutawakil, D. 1988. Some new common fixed point theorems under strict contractive conditions, Journal of Mathematical Analysis and Applications 226(1988) 251-258.
  2. Alaca, C. , Turkoglu D. and Yildiz, C. 2006. Fixed point in intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 29(2006) 1073-1078.
  3. Alaca, C. , Altun, I. and Turkoglu, D. 1986. On compatible mapping of type (I) and (II) in intuitionistic fuzzy metric spaces, Korean Mathematical Society 23(3) (1986) 771-779.
  4. Atanssove, K. 1986. Intuitionstic fuzzy sets, Fuzzy Sets and Systems 2(1) (1986) 87-96.
  5. Gana Bhaskar, T. and Lakshmikantham, V. 2006. Fixed point theorems in partially ordered metric space and applications, Nonlinear Analysis 65 (2006) 1379-1393.
  6. Choudhary, B. S. and Kundu, A. 2010. A coupled coincidence point result in partially ordered metric space for compatible mappings, Nonlinear Analysis 73 (2010) 2524-2531.
  7. Ciric, L. , and Lakshmikantham, V. 2009. Coupled random fixed point theorems in partially ordered metric spaces, Stoch. Analysis. 27(6) (2009) 1246-1259.
  8. Dubois, D. , and Prade, H. 1980. Fuzzy sets theory and applications to policy analysis and information systems, New York, Plenum Press (1980).
  9. Grabiec, M. 1988. Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems 27(1988) 385-389.
  10. Gregori, V. , Romaguera, S. and Veeramani, P. 2006. A note on intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 28(4) (2006) 902-905.
  11. Hadzic, O. and Pap, E. 2001. Fixed point theory in PM-spaces, Dordrecht: Kluwer Academic publishers, (2001).
  12. Kaleva, O. and Seikkala, S. 1984. On fuzzy metric spaces. Fuzzy Sets and Systems 12(1984) 215-229.
  13. Klement, EP, Mesiar, R. and Pap, E. 2000. Triangular norms, trends in logic & Dordrecht, Kluwer Academic Publishers (2000).
  14. Kramosil, O. and Michalek, J. 1975. Fuzzy metrics and statistical metric spaces, Kybernetika 15(1975) 326-334.
  15. Kumar, S. , Vats, R. K. , Singh, V. and Garg, S. K. 2010. Some common fixed point theorem in intuitionstic fuzzy metric spaces, Int. Journal of Math. Analysis, 26 (4) (2010), 1255-1270.
  16. Lakshmikantham, V. and Ciric, L. 2009. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis 70 (12) (2009) 4341-4349.
  17. Menger, K. 1942. Statistical metrics, Proceeding of National Academy Science 28(1942) 535–537.
  18. Mihet, D. 2010. Fixed point theorem in fuzzy metric spaces using property E. A. , Nonlinear Anal. 73 (2010) 2184-2188.
  19. Naschie, M. S. El 2007. A review of applications and results of E-infinity theory, International Journal of Nonlinear Sciences and Numerical Simulation, 8(1) (2007) 11-20.
  20. Naschie, M. S. El 2004. A review of E-infinity theory and the mass spectrum of high energy particle physics. Chaos Solitons & Fractals 19(1) (2004) 209-236.
  21. Naschie, M. S. El 2005. On a class of fuzzy Kahler-like manifolds. Chaos Solitons & Fractals 26(2) (2005) 257-261.
  22. Naschie, M. S. El 2005. From experimental quantum optics to quantum gravity via a fuzzy Kahler manifold, Chaos, Solitons & Fractals 25(5) (2005) 969-977.
  23. Naschie, M. S. El 1998. On the uncertainty of Cantorian geometry and the two slit experiment. Chaos, Solitons & Fractals 9(3) (1998) 517-529.
  24. Naschie, M. S. El 2004. Quantum gravity, Clifford algebras, fuzzy set theory and the fundamental constants of nature, Chaos, Solitons & Fractals 20(3) (2004) 437-450.
  25. Pant, R. P. 1999. R-weak commutatibility and common fixed points, Soochow Journal Math 25(1999) 37-42.
  26. Park, J. H. 2004. Intuitionistic fuzzy metric spaces, Chaos Solitons & Fractals 22(2004) 1039-1046.
  27. Park, J. H. , Park, J. S. and Kwun, Y. C. 2005. A common fixed point theorem in intuitionstic fuzzy metric spaces, In: Advance in Natural Computing Data Mining (Proceeding 2nd ICNC and 3rd FSKK) (2005) 293-300.
  28. Park, J. S. and Kwun, Y. C. and Park, J. H. 2006. Compatible mapping and compatible mapping of type (?) and (?) in intuitionistic fuzzy metric spaces, Demonstration Mathematica 39(3) (2006) 671-684.
  29. Romaguera, S. and Tirado, P. 2009. Contraction maps on Ifqm-spaces with application to recurrence equation of quicksort, Electronics Notes in Theoretical Computer 225(2009) 269-279.
  30. Saadati, R. and Park, J. H. 2006. On the intuitionistic fuzzy topological spaces, Chaos, Solitons & Fractals 27(2) (2006) 331-344.
  31. Schweizer, B. and Sklar, A. 1983. Probabilistic metric spaces, Amesterdam North Holland 1983.
  32. Schweizer, B. and Sklar, A. 1983. Probabilistic metric spaces, Amesterdam North Holland 1983.
  33. Turkoglu, D. , Alaca, C. , Cho, Y. J. and C. Yildiz, 2006. Common fixed point theorem in intuitionistic fuzzy metric spaces, Journal of applied mathematics and computing, 22(1-2) (2006) 411-424.
  34. Zadeh, L. A. 1965. Fuzzy Sets, Information and control 8(1965) 103-112.
  35. Sabetghadam, F. , Masiha, H. P. and Sanatpour, A. H. 2009. Some coupled fixed point theorem in cone metric spaces, Fixed Point Theory Appl. 2009, Art. ID 125426, 8 pp.
  36. Samet, B. 2010. Coupled fixed point theorem for generalized Meir-Keeler contaction in partially ordered metric space, Nonlinear Anal. , 72 (12) (2010) 4508-45017.
Index Terms

Computer Science
Information Sciences

Keywords

Intuitionistic Fuzzy metric space Coupled coincidence point Mixed g-monotone property Weakly compatible mappings E. A. property