International Journal of Computer Applications |
Foundation of Computer Science (FCS), NY, USA |
Volume 65 - Number 18 |
Year of Publication: 2013 |
Authors: Amouda Nizam, Buvaneswari Shanmugham |
10.5120/11025-5659 |
Amouda Nizam, Buvaneswari Shanmugham . Self-Organizing Genetic Algorithm: A Survey. International Journal of Computer Applications. 65, 18 ( March 2013), 25-32. DOI=10.5120/11025-5659
Self-organization systems are an increasingly attractive dynamic processes without a central control, emerge global order from local interactions in a bottom up approach. The advantage of blending the concept of self-organization enhances the working efficiency of other techniques to find a solution of huge search problem. Genetic Algorithms (GA) is such a technique, inspired by the natural evolution process, used to solve difficult optimization problem of large space solution, for an example, multiple sequence alignment (MSA) problem in a bioinformatics research. Self-organization technique automates the selection of appropriate parameter values of GA during execution without the user's intervention. An attempt towards applying Self-organizing Genetic Algorithm (SOGA) on MSA requires a complete knowledge of the various parameters of SO and its relationships. This lead us to make a complete survey on inherent properties of SO and the method of blending GA in order to develop a self-organizing genetic algorithm (SOGA) for MSA. The aim of the research is to make use of the efficiency of GA without getting any input from the non-trained users to tune the parameters in order to achieve the expected result.