CFP last date
20 December 2024
Reseach Article

Differential Precision Rectifier using Single CMOS DVCC

by Ahmed M. Nahhas
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 64 - Number 7
Year of Publication: 2013
Authors: Ahmed M. Nahhas
10.5120/10643-5400

Ahmed M. Nahhas . Differential Precision Rectifier using Single CMOS DVCC. International Journal of Computer Applications. 64, 7 ( February 2013), 1-6. DOI=10.5120/10643-5400

@article{ 10.5120/10643-5400,
author = { Ahmed M. Nahhas },
title = { Differential Precision Rectifier using Single CMOS DVCC },
journal = { International Journal of Computer Applications },
issue_date = { February 2013 },
volume = { 64 },
number = { 7 },
month = { February },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume64/number7/10643-5400/ },
doi = { 10.5120/10643-5400 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:17:27.152222+05:30
%A Ahmed M. Nahhas
%T Differential Precision Rectifier using Single CMOS DVCC
%J International Journal of Computer Applications
%@ 0975-8887
%V 64
%N 7
%P 1-6
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Three novel differential precision rectifier circuits are realized using single CMOS differential voltage current conveyor. One of the realized differential precision rectifiers provides half wave voltage output. The other two circuits give full wave voltage outputs. Among the two full wave differential precision rectifiers, one circuit provides single ended voltage output while other full wave differential precision rectifier gives differential full wave voltage output. All the realized differential precision rectifiers possess the gain control facility through two resistors ratio. The realized differential precision rectifier circuits are designed and verified using PSPICE and the results thus obtained justify the theory.

References
  1. Wilson, B. 1990, Recent developments in current conveyors and current-mode circuits, IEE Proceedings G, Vol. 137, 2, 63–77.
  2. Toumazou, C. , Lidgey, F. J. and Haigh, D. G. 1998, Analogue IC Design: The Current-Mode Approach, IEE, York, UK.
  3. Khan, I. A. and Maheshwari, S. 2000, Simple first order all-pass section using a single CCII, International Journal of Electronics, Vol. 87, 3, 303-306.
  4. Khan, I. A. and Zaidi, M. H. 2000, Multifunctional translinear-C current-mode filter, International Journal of Electronics, Vol. 87, 9, 1047–1051.
  5. Mita, R. , Palumbo, G. and Pennisi, S. 2003, 1. 5-V CMOS CCII+ with high current-drive capability, IEEE Trans. CAS-II, Vol. 50, 4, 187-190.
  6. Minaei, S. , Ibrahim, A. Muhammed and Kuntman, H. 2003. DVCC based current-mode first order all-pass filter and its application. In Proceedings of The 10th IEEE International Conference on Electronics Circuits and Systems, Turkey, 276-279.
  7. Kumar, V. , Keskin, A. U. , Pal K. 2005, DVCC based single element controlled oscillators using all grounded components and simultaneous current voltage mode outputs, Frequenz, vol. 59, 7–8.
  8. Khan, I. A. , Beg, P. and Ahmed, M. T. 2007, First order current mode filters and multiphase sinusoidal oscillators using MOCCIIs, Arabian, Journal of Science and Engineering, Saudi Arabia, Vol. 32, 2C, 119-126.
  9. Tsukutani, T. Sumi, Y. and Yabuki, N. 2007, Novel current mode biquadratic circuit using only plus type DO-DVCCs and grounded passive components, International Journal of Electronics, vol. 94, 12, 1137–1146.
  10. Sumi, Y. Tsukutani, T. and Yabuki, N. 2008, Novel current-mode biquadratic circuit using only plus type DO-DVCCCs, in Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS '08), vol. 8–11, 1–4.
  11. Khan, I. A. and Beg, P. 2009, Fully differential sinusoidal quadrature oscillator using CMOS DVCC, Proc. International Conference on Communication, Computers and Power –ICCCP2009, Muscat, Oman, SQU-2009 ISSN: 1813-419X-101. 1-101. 3.
  12. Minaei, S. and Ibrahim, M. A. 2009, A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading, International Journal of Circuit Theory and Applications, Vol. 37, 7, 793–810.
  13. Ansari, M. S. and Khan, I. A. 2010, Multiphase differential sinusoidal oscillator based on DVCC, Int. J. of Recent Trends in Engineering and Technology, Vol. 4, 3, 96-99.
  14. Chaturvedi, B. and Maheshwari, S. 2011, Current mode biquad filter with minimum component count, Active and Passive Electronic Components, Vol. 2011, 1-7,
  15. Khan, I. A. and Simsim, M. T. 2011, A Novel Impedance Multiplier using Low voltage Digitally Controlled CCII, Proc. IEEE GCC Conference and Exhibition, Dubai, UAE, 331-334.
  16. Khan, I. A. and Nahhas, A. M. 2012, Reconfigurable voltage mode first order multifunctional filter using single low voltage digitally controlled CMOS CCII, International J. Computer Applications, Vol. 45, 5, 37-40.
  17. Khan, I. A. and Nahhas, A. M. 2012, Current mode programmable analog modules using low voltage digitally controlled CMOS CCII, International J. Computer Applications, Vol. 48, 4, 38-44.
  18. Khan, I. A. and Nahhas, A. M. 2012, Reconfigurable voltage mode phase shifter using low voltage digitally controlled CMOS CCII, Electrical and Electronic Engineering, Vol. 2, 4, 226-229.
  19. Nahhas, A. M. 2012, Reconfigurable current mode programmable multifunctional filter, International J. on Recent Trends in Engineering and Technology, Vol. 7, 2, 88-91.
  20. Zumbahlen, H. 2006, Basic Linear Design, Analog Devices.
  21. Toumazou, C. , Lidgey, F. J. , and Chattong, S. 1994. High frequency current conveyor precision full-wave rectifier. Electronics Letters, Vol. 30, 10, 745-746.
  22. Gift, S. J. G. 2000. A high-performance full-wave rectifier circuit. International Journal of Electronics, Vol. 89, 467-476.
  23. Monpapassorn, A. , Dejhan, K. and Cheevasuvit, F. 2001, A full-wave rectifier using a current conveyor and current mirrors, International Journal of Electronics, Vol. 88, 751-758.
  24. Tiliute, D. E. 2004, High acuraccy current-mode precision rectifier based on unity-gain cells, Proc. 7th International Conference on Development and Application Systems, Suceava, Romania, 155-158.
  25. Maheshwari, S. and Khan, I. A. 2005, An integrable precision rectifier with current controlled output. Journal of Active and Passive Electronic Devices, Vol. 1, 172-182.
  26. Kumngern, M. and Dejhan, K. 2006, High frequency and high precision CMOS full-wave rectifier. International Journal of Electronics, Vol. 93, 185-199.
  27. Yuce, E. , Minaei, S. , and Cicekoglu, O. , 2006, Full-wave rectifier realization using only two CCIIs and NMOS transistors. International Journal of Electronics, Vol. 93, 8, 533-541.
  28. Maheshwari, S. 2007. Current controlled precision rectifier circuits. Journal of Circuits Systems and Computers. Vol. 16, 1, 129-138.
  29. Biolek, D. , Hancioglu, E. , and Keskin Umit, A. 2008. High-performance current differencing transconductance amplifier and its application in precision current-mode rectification. International Journal of Electronics and Communications, Vol. 62, 92-96.
  30. Minhaj, N. 2009, Electronically controlled precision full-wave rectifier circuits, Proc. IEEE Int. Conference Advances in Recent Technologies in Communication and Computing, 240-243.
  31. Khateb, F. , Vávra, J. and Biolek, D. 2010, A novel current-mode full-wave rectifier based on one CDTA and two diodes, Radio Engineering, Vol. 19, 3, 437-445.
  32. Beg, P. , Khan, I. A. and Maheshwari, S. 2012, Biphase amplifier based precision rectifiers using current conveyors, International J. Computer Applications, Vol. 42, 3, 14-18.
Index Terms

Computer Science
Information Sciences

Keywords

Current conveyors DVCC precision rectifiers