We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Numerical Solution of n-th Order Fuzzy Linear Differential Equations by Homotopy Perturbation Method

by Smita Tapaswini, S. Chakraverty
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 64 - Number 6
Year of Publication: 2013
Authors: Smita Tapaswini, S. Chakraverty
10.5120/10636-5376

Smita Tapaswini, S. Chakraverty . Numerical Solution of n-th Order Fuzzy Linear Differential Equations by Homotopy Perturbation Method. International Journal of Computer Applications. 64, 6 ( February 2013), 5-10. DOI=10.5120/10636-5376

@article{ 10.5120/10636-5376,
author = { Smita Tapaswini, S. Chakraverty },
title = { Numerical Solution of n-th Order Fuzzy Linear Differential Equations by Homotopy Perturbation Method },
journal = { International Journal of Computer Applications },
issue_date = { February 2013 },
volume = { 64 },
number = { 6 },
month = { February },
year = { 2013 },
issn = { 0975-8887 },
pages = { 5-10 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume64/number6/10636-5376/ },
doi = { 10.5120/10636-5376 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:15:39.846096+05:30
%A Smita Tapaswini
%A S. Chakraverty
%T Numerical Solution of n-th Order Fuzzy Linear Differential Equations by Homotopy Perturbation Method
%J International Journal of Computer Applications
%@ 0975-8887
%V 64
%N 6
%P 5-10
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper targets to investigate the numerical solution of -th order fuzzy differential equations with fuzzy environment using Homotopy Perturbation Method (HPM). Triangular fuzzy convex normalized sets are used for the fuzzy parameter and variables. Obtained results are compared with the existing solution depicted in term of plots to show the efficiency of the applied method.

References
  1. Abbasbandy S. , Allahviranloo T. , Numerical solutions of fuzzy differential equations by taylor method, Computational Methods in Applied Mathematics 2, 113–124, (2002).
  2. Abbasbandy S. , Allahviranloo T. , Lopez-Pouso O. , Nieto J. J. , Numerical methods for fuzzy di?erential inclusions, Computer and Mathematics With Applications 48, 1633–1641 (2004).
  3. Abbasbandy S. , Allahviranloo T. , Darabi P. , Numerical solution of n-order fuzzy differential equations by runge-kutta method, Mathematical and Computational Applications, 16, 935-946 (2011).
  4. Abbasbandy S. , Allahviranloo T. , Darabi P. , O. Sedaghatfar, Variational Iteration method for solving n-th order fuzzy differential equations, Mathematical and Computational Applications, 4,819-829 (2011).
  5. Allahviranloo T. , Ahmady E. , Ahmady N. , N-th order fuzzy linear differential equations, Information science, 178, 1309-1324 (2008).
  6. Allahviranloo T. , Ahmady N. , Ahmady E. , Numerical solution of fuzzy differential equations by predictor–corrector method, Information Sciences 177/7, 1633–1647 (2007).
  7. Allahviranloo T. , Ahmady N. , Ahmady E. , A method for solving n-th order fuzzy linear differential equations, Comput. Math. Appl 86, 730-742 (2009).
  8. Allahviranloo T. , Hashemzehi S. , The Homotopy Perturbation Method for Fuzzy Fredholm Integral Equations, Journal of Applied Mathematics, Islamic Azad University of Lahijan, 5, 1-12 (2008).
  9. Allahviranloo T. , Khezerloo M. , Ghanbari M. and Khezerloo S. , The Homotopy Perturbation Method for Fuzzy Volterra Integral Equations, international journal of computational cognition 8,31-37 (2010).
  10. Azimzadeh Z, Vahidi A. R. and Babolian E. , Exact solutions for non-linear Duf?ng's equations by He's homotopy perturbation method, Indian J Phys 86 (8): 721–726 (2012).
  11. Bede B. , "Note on numerical solutions of fuzzy differential equations by predictor-corrector method", Information Sciences, 178, 1917-1922 (2008).
  12. Biazar J. , Ghazvini H. , Exact solutions for nonlinear Schrödinger equations by He's homotopy perturbation method, Physics Letters A 366, 79–84 (2007).
  13. iazar J. , Hosseini K. , Gholamin P. , Homotopy perturbation method Fokker-Plank equation, International Mathematical Forum, 19, 945-954, (2008).
  14. Buckley J. J. , Feuring T. , Fuzzy initial value problem for Nth-order linear differential equations, Fuzzy Sets and Systems 121, 247-255 (2001).
  15. Chang S. L. and Zadeh L. A. , On fuzzy mapping and control, IEEE Transaction on Systems Man and Cybernetics, 2, 30-34 (1972).
  16. Dubois D. and Prade H. , Towards fuzzy differential calculus: Part 3, differentiation, Fuzzy Sets and Systems, 8, 225-233 (1982).
  17. Ganji D. D. , The applications of He's homotopy perturbation method to nonlinear equation arising in heat transfer, Physics letter A, 335, 337-341 (2006).
  18. Ghanbari M. , Numerical solution of fuzzy initial value problems under generalized differentiability by HPM, Int. J. Industrial Mathematics 1, 19-39 (2009).
  19. Hanss M Applied Fuzzy Arithmetic: An Introduction with Engineering Applications. Springer-Verlag, Berlin, 2005
  20. He J. H. , Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, 178, 257-262 (1999)
  21. He J. H. , A coupling method of homotopy technique and a perturbation technique for nonlinear problems, International Journal of Non-linear Mechanics, 35, 37-43 (2000).
  22. He J. H. ,The homotopy perturbation method for nonlinear oscillators with discontinuities, Applied Mathematics and Computation 151, 287–292 (2004)
  23. He J. H. , Application of homotopy perturbation method to nonlinear wave equations, Chaos, Solitons and Fractals 26, 695–700 (2005).
  24. He J. H. , Homotopy perturbation method for solving boundary value problems, Physics Letters A 350, 87–88 (2006).
  25. Hosseinnia S. H. , Ranjbar A. , Ganji D. D. , Soltani H. , Ghasemi J. , Homotopy perturbation based linearization of nonlinear heat transfer dynamic, Journal of Applied Mathematics and Computing 29: 163–176 (2009).
  26. Jafari H. , Saeidy M. , Baleanu D. , The Variational Iteration method for solving n-th order fuzzy differential equations, central European Journal of Physics, 10, 76-85 (2012).
  27. Jaulin L. , Kieffer M. , Didri O. t, and Walter E. , Applied Interval Analysis, Springer, (2001).
  28. Kaleva O. , Fuzzy differential equations, Fuzzy Sets and Systems, 24, 301-317 (1987).
  29. Kaleva O. , The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems, 35, 389-396 (1990).
  30. Khaki M. , Ganji D. D. , Analytical solutions of nano boundary layer flows by using he's homotopy perturbation method, Mathematical and Computational Applications, 15, No. 5, 962-966, (2010).
  31. Ma M. , Friedman M. , and Kandel A. , Numerical solutions of fuzzy differential equations, Fuzzy Sets and Systems, 105, 133-138 (1999) .
  32. Mikaeilvand N. , Khakrangin S. , Solving fuzzy partial differential equations by fuzzy two-dimensional differential transform method, Neural Computing and Application 21, S307–S312, (2012).
  33. Nave1 O. , Lehavi Y. , Goldshtein V. and Ajadi S. , Application of the Homotopy Perturbation Method (HPM) and the Homotopy Analysis Method (HAM) to the Problem of the Thermal Explosion in a Radiation Gas with Polydisperse Fuel Spray, Applied & Computational Mathematics, 2012, 1:4.
  34. Rafie M. , Ganji D. D. , Explicit solutions of Helmholtz equation and fifth order KdV equation using homotopy perturbation method, International journal of Nonlinear Sciences and Numerical simulation, 7,321-328 (2006).
  35. Ross T. J. , Fuzzy logic with engineering applications. Wiley Student Edition, 2007.
  36. Seikkala S. , On the fuzzy initial value problem, Fuzzy Sets and Systems, 24, 319-330 (1987).
  37. Tapaswini Smita and Chakraverty S, A New Approach to Fuzzy Initial Value Problem by Improved Euler Method. International J Fuzzy Inf Eng 4, 293-312 (2012).
  38. Tapaswini Smita and Chakraverty S. , Homotopy perturbation method for solving fuzzy quadratic Riccati differential equations, 39th Annual conference of Orissa Mathematical Society and National seminar on cryptography, VIVTECH, Bhubaneswar, Odisha, 4th -5th February, (2012).
  39. Thiagarajan S. , Meena A. , Anitha S. , Rajendran L. , Analytical expression of the steady-state catalytic current of mediated bioelectrocatalysis and the application of He's Homotopy perturbation method, Journal of Mathematical Chemistry, Journal of Mathematical Chemistry 49, 1727–1740 (2011).
  40. Vanani S. K. , Soleymani F. , Application of the Homotopy Perturbation Method to the Burgers Equation with Delay, Chin. phys. lett. 29, 030202 (2012)
  41. Zare M. , Jalili O. and Delshadmanesh M, Two binary stars gravitational waves: homotopy perturbation method, Indian J Phys, 86, 855–858 (2012).
  42. Zedan H. A. and Tantawy S. Sh. , Solution of Davey–Stewartson Equations by Homotopy Perturbation Method, Computational Mathematics and Mathematical Physics, 49, 1382–1388 (2009).
  43. Zhang B. , Liu Zheng-Rong, Jian-Feng Mao, Approximate explicit solution of Camassa-Holm equation by He's homotopy perturbation method, J Appl Math Comput 31: 239–246 (2009) .
  44. Zimmermann H. J. , Fuzzy set theory and its application, Kluwer academic publishers, Boston/Dordrecht/London, (2001).
Index Terms

Computer Science
Information Sciences

Keywords

n-th order fuzzy linear differential equations Fuzzy Number Triangular Fuzzy Number Homotopy Perturbation Method (HPM)