We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Role of Superior Iterates in optimizing the Dynamic Noise

by Deepak Negi, Ashish Negi, Sumiti Kapoor
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 64 - Number 20
Year of Publication: 2013
Authors: Deepak Negi, Ashish Negi, Sumiti Kapoor
10.5120/10748-5618

Deepak Negi, Ashish Negi, Sumiti Kapoor . Role of Superior Iterates in optimizing the Dynamic Noise. International Journal of Computer Applications. 64, 20 ( February 2013), 10-14. DOI=10.5120/10748-5618

@article{ 10.5120/10748-5618,
author = { Deepak Negi, Ashish Negi, Sumiti Kapoor },
title = { Role of Superior Iterates in optimizing the Dynamic Noise },
journal = { International Journal of Computer Applications },
issue_date = { February 2013 },
volume = { 64 },
number = { 20 },
month = { February },
year = { 2013 },
issn = { 0975-8887 },
pages = { 10-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume64/number20/10748-5618/ },
doi = { 10.5120/10748-5618 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:17:06.854817+05:30
%A Deepak Negi
%A Ashish Negi
%A Sumiti Kapoor
%T Role of Superior Iterates in optimizing the Dynamic Noise
%J International Journal of Computer Applications
%@ 0975-8887
%V 64
%N 20
%P 10-14
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The intent of this paper is to present a review of literature on perturbations of the Mandelbrot map in fractal analysis in the recent years. In this paper we have studied the work of various researchers in the field of effect of various noise on Mandelbrot set.

References
  1. Argyris J, Andreadis I, Karakasidis TE. On perturbation of the Mandelbrot map. Chaos, Solitons & Fractals 2000;11:1131–6.
  2. Argyris J, Karakasidis TE ,Andreadis I. On the Julia set of the perturbed Mandelbrot map. Chaos, Solitons & Fractals 2000;11:2067–2073.
  3. Argyris J, Andreadis I, Pavlos G, Athanasiou M. On the influence of noise on the correlation dimension of chaotic attractors. Chaos 1998;9:343–61.
  4. Argyris J, Faust G, Haase M. An exploration of chaos. North-Holland: Elsevier, Amsterdam; 1994.
  5. Argyris J, Karakasidis TE, Andreadis I. On the Julia sets of a noise-perturbed Mandelbrot map. Chaos, Solitons & Fractals 2002;13(2):245–52. MR1860768 (2002g:37051).
  6. Bunde. A, Havlin . S,"fractals in science " springer-verlag.
  7. Chauhan Y. S. Rana R,and Negi A, "Mandel-Bar Sets of Inverse Complex Function", International Journal of Computer Applications (0975-8887) Volume 9- No. 2, November 2010.
  8. Chauhan Y. S. Rana R,and Negi A, "New Tricorns and Multicorns of Ishikawa Iterates, In Press, Int. Journal of Computer Application (Oct. 2010 Edition).
  9. Chauhan Y. S. Rana R,and Negi A, "Complex Dynamics of Ishikawa Iterates for Non Integer Values ", International Journal of Computer Applications (0975-8887) Volume 9- No. 2, November 2010.
  10. Ecuyer P. L,"Efficient and portable combined random number generator", Commun. of the ACM 31 (1988) 742-749 and 774.
  11. Glynn. E. F. , "The Evolution of the Gingerbread Mann", Computers and Graphics 15,4 (1991), 579-582.
  12. Ishikawa. S, "Fixed points by a new iteration method", Proc. Amer. Math. Soc. 44 (1974), 147-150.
  13. J. Peinke, J. Parisi, B. Rohricht, O. E. Rossler, Smooth decomposition of generalized Fatou set explains smooth structure in generalized Mandelbrot set, Z. Naturforsch 43A (1987) 14-16.
  14. Negi. A, Rani . M . A new approach to dynamic noice on superior Mandelbrot set. Chaos, Solitons & Fractals 2006;5074.
  15. Peitgen . H. O. , P. H. Richter, The Beauty of Fractals, Springer, Berlin, 1986.
  16. Pickover . C, "Computers, Pattern, Chaos, and Beauty", St. Martin's Press, NewYork, 1990.
  17. Peitgen H, Jürgens H, Saupe D. Chaos and fractals: new frontiers of science. New York: Springer-Verlag; 2004.
  18. Rana. R, Chauhan Y. S. and Negi A. , Non Linear dynamics of Ishikawa Iteration, In Press, International Journal of Computer Applications (0975 – 8887) Volume 9– No. 2, November 2010.
Index Terms

Computer Science
Information Sciences

Keywords

Superior Mandelbrot Set Complex Dynamics Relative Superior Julia Set Ishikawa Iteration